Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.40 trang 92 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.3 trên 4 phiếu

Cho cấp số cộng

Cho cấp số cộng \(({u_n})\) và cho các số nguyên dương m, k với \(m < k\). Chứng minh rằng

                       \({u_k} = {{{u_{k - m}} + {u_{k + m}}} \over 2}.\)

Áp dụng. Hãy tìm một cấp số cộng có 7 số hạng mà số hạng thứ ba bằng 2 và tổng của số hạng đầu và số hạng cuối bằng 10.

Giải

Kí hiệu d là công sai của cấp số cộng \(({u_n})\), ta có

\(\eqalign{
& {u_{k - m}} = {u_1} + (k - m - 1)d = {u_1} + (k - 1)d - md \cr&= {u_k} - md, \cr
& {u_{k + m}} = {u_1} + (k + m - 1)d = {u_1} + (k - 1)d + md \cr&= {u_k} + md \cr} \)

Từ đó suy ra \({u_{k - m}} + {u_{k + m}} = 2{u_k}\) hay \({u_k} = {{{u_{k - m}} + {u_{k + m}}} \over 2}.\)

Áp dụng. Với mỗi \(n \in \left\{ {1,2,3,4,5,6,7} \right\},\) kí hiệu \({u_n}\) là số hạng thứ n của cấp số cộng cần tìm. Theo giả thiết cả bài ra, ta có \({u_3} = 2\) và \({u_1} + {u_7} = 10\)

Áp dụng kết quả đã chứng minh ở trên cho \(m = 3\) và \(k = 4,\) ta được

                                \({u_4} = {{{u_1} + {u_7}} \over 2} = {{10} \over 2} = 5\)

Suy ra \(d = {u_4} - {u_3} = 5 - 2 = 3.\) Do đó

\({u_1} = {u_3} - 2d = 2 - 2.3 =  - 4,\)

\({u_2} = {u_1} + d =  - 4 + 3 =  - 1,\)

\({u_5} = {u_4} + d = 5 + 3 = 8\)

\({u_6} = {u_5} + d = 8 + 3 = 11\) và \({u_7} = {u_6} + d = 11 + 3 = 14\)

sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan