Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.40 trang 92 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.3 trên 4 phiếu

Cho cấp số cộng

Cho cấp số cộng \(({u_n})\) và cho các số nguyên dương m, k với \(m < k\). Chứng minh rằng

                       \({u_k} = {{{u_{k - m}} + {u_{k + m}}} \over 2}.\)

Áp dụng. Hãy tìm một cấp số cộng có 7 số hạng mà số hạng thứ ba bằng 2 và tổng của số hạng đầu và số hạng cuối bằng 10.

Giải

Kí hiệu d là công sai của cấp số cộng \(({u_n})\), ta có

\(\eqalign{
& {u_{k - m}} = {u_1} + (k - m - 1)d = {u_1} + (k - 1)d - md \cr&= {u_k} - md, \cr
& {u_{k + m}} = {u_1} + (k + m - 1)d = {u_1} + (k - 1)d + md \cr&= {u_k} + md \cr} \)

Từ đó suy ra \({u_{k - m}} + {u_{k + m}} = 2{u_k}\) hay \({u_k} = {{{u_{k - m}} + {u_{k + m}}} \over 2}.\)

Áp dụng. Với mỗi \(n \in \left\{ {1,2,3,4,5,6,7} \right\},\) kí hiệu \({u_n}\) là số hạng thứ n của cấp số cộng cần tìm. Theo giả thiết cả bài ra, ta có \({u_3} = 2\) và \({u_1} + {u_7} = 10\)

Áp dụng kết quả đã chứng minh ở trên cho \(m = 3\) và \(k = 4,\) ta được

                                \({u_4} = {{{u_1} + {u_7}} \over 2} = {{10} \over 2} = 5\)

Suy ra \(d = {u_4} - {u_3} = 5 - 2 = 3.\) Do đó

\({u_1} = {u_3} - 2d = 2 - 2.3 =  - 4,\)

\({u_2} = {u_1} + d =  - 4 + 3 =  - 1,\)

\({u_5} = {u_4} + d = 5 + 3 = 8\)

\({u_6} = {u_5} + d = 8 + 3 = 11\) và \({u_7} = {u_6} + d = 11 + 3 = 14\)

sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan