Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 35 trang 70 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
3.8 trên 16 phiếu

Tìm các giá trị của m và n trong mỗi trường hợp sau:

Cho đường thẳng \(y = \left( {m - 2} \right)x + n\,\,\,\,\,\left( {m \ne 2} \right)\)        (d)

Tìm các giá trị của m và n trong mỗi trường hợp sau :

a)      Đường thẳng (d) đi qua hai điểm A(-1;2), B(3;-4) ;

b)      Đường thẳng (d) cắt trục tung tại điểm có tung độ bằng \(1 - \sqrt 2 \) và cắt trục hoành tại điểm có hoành độ bằng \(2 + \sqrt 2 \); 

c)      Đường thẳng (d) cắt đường thẳng \(y = {1 \over 2}x - {3 \over 2}\);

d)     Đường thẳng (d) song song với đường thẳng \(y =  - {3 \over 2}x + {1 \over 2}\);

e)      Đường thẳng (d) trùng với đường thẳng \(y = 2x - 3\).

Gợi ý làm bài:

a) Đường thẳng \(y = \left( {m - 2} \right)x + n\,\,\,\,\,\left( {m \ne 2} \right)\) đi qua hai điểm A(-1;2) và B(3; -4)

nên tọa độ của A và B nghiệm đúng phương trình đường thẳng.

Điểm A:

\(\eqalign{
& 2 = \left( {m - 2} \right).\left( { - 1} \right) + n \cr
& \Leftrightarrow 2 = - m + 2 + n \cr
& \Leftrightarrow m = n \cr} \)     (1)

Điểm B:

\(\eqalign{
& - 4 = \left( {m - 2} \right).3 + n \cr
& \Leftrightarrow 3m + n = 2 \cr} \)        (2)

Thay (1) vào (2)  ta có:

\(\eqalign{
& 3m + m = 2 \cr
& \Leftrightarrow 4m = 2 \cr
& \Leftrightarrow m = {1 \over 2} \cr} \)                                                     

Vậy với \(m = n = {1 \over 2}\) thì đường thẳng \(y = \left( {m - 2} \right)x + n\,\,\,\,\,\left( {m \ne 2} \right)\) đi qua hai điểm A(-1;2) và B(3;-4).

b) Đường thẳng y = (m – 2)x + n cắt trục tung tại điểm có tung độ bằng \(1 - \sqrt 2 \) nên ta có: \(n = 1 - \sqrt 2 \).

Đường thẳng \(y = \left( {m - 2} \right)x + n\) cắt trục tung tại điểm có hoành độ bằng \(2 + \sqrt 2 \) nên ta có tung độ của giao điểm bằng 0.

Ta có:

\(\eqalign{
& 0 = \left( {m - 2} \right)\left( {2 + \sqrt 2 } \right) + 1 - \sqrt 2 \cr
& \Leftrightarrow \left( {2 + \sqrt 2 } \right)m - 4 - 2\sqrt 2 + 1 = 0 \cr
& \Leftrightarrow \left( {2 + \sqrt 2 } \right)m = 3 + 3\sqrt 2 \cr
& \Leftrightarrow m = {{3 + 3\sqrt 2 } \over {2 + \sqrt 2 }} = {{3\left( {1 + \sqrt 2 } \right)} \over {\sqrt 2 \left( {1 + \sqrt 2 } \right)}} \cr
& = {3 \over {\sqrt 2 }} = {{3\sqrt 2 } \over 2} \cr} \)

Vậy với \(n = 1 - \sqrt 2 \) và \(m = {{3\sqrt 2 } \over 2}\) thì đường thẳng (d) cắt trục tung tại điểm có tung độ bằng \(1 - \sqrt 2 \) và cắt trục hoành tại điểm có hoành độ \(2 + \sqrt 2 \).

c) Đường thẳng \(y = \left( {m - 2} \right)x + n\) cắt đường thẳng \(y = {1 \over 2}x - {3 \over 2}\) khi và chỉ khi \(m - 2 \ne {1 \over 2} \Leftrightarrow m \ne {1 \over 2} + 2 \Leftrightarrow m \ne {5 \over 2}\).

Vậy với \(m \ne {5 \over 2}\) thì đường thẳng (d) cắt đường thẳng \(y = {1 \over 2}x - {3 \over 2}\).

d) Đường thẳng \(y = \left( {m - 2} \right)x + n\) song song với đường thẳng \(y =  - {3 \over 2}x + {1 \over 2}\) khi và chỉ khi \(m - 2 =  - {3 \over 2}\) và \(n \ne {1 \over 2}\) .

Ta có: \(m - 2 =  - {3 \over 2} \Leftrightarrow m =  - {3 \over 2} + 2 \Leftrightarrow m = {1 \over 2}\)

Vậy với \(m = {1 \over 2}\) và \(n \ne {1 \over 2}\) thì đường thẳng (d) song song với đường thẳng \(y =  - {3 \over 2}x + {1 \over 2}.\)

e) Đường thẳng \(y = \left( {m - 2} \right)x + n\) trùng với đường thẳng y = 2x – a khi và chỉ khi \(m - 2 = 2\) và n = -3 .

Ta có: \(m - 2 = 2 \Leftrightarrow m = 4\)

Vậy với m = 4 và n = -3 thì đường thẳng (d) trùng với đường thẳng y = 2x – 3.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan