Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.54 trang 94 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Cho cấp số nhân

Cho cấp số nhân \(({u_n})\) có \(6{u_2} + {u_5} = 1\) và \(3{u_3} + 2{u_4} =  - 1.\) Hãy tìm số hạng đầu tổng quát của cấp số nhân đó.

Giải

Gọi q là công bội của cấp số nhân đã cho, ta có

\(\left\{ \matrix{
6{u_2} + {u_5} = 1 \hfill \cr
3{u_3} + 2{u_4} = - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{u_1}.(6q + {q^4}) = 1\,\,\,\,\,\,\,\,\,\;\;\;\,(1) \hfill \cr
{u_1}.(3{q^2} + 2{q^3}) = - 1\,\,\,\,\,(2) \hfill \cr} \right.\)

Dễ thấy, \({u_1}.q \ne 0\). Do đó cộng theo vế (1) và (2) ta được

\({q^3} + 2{q^2} + 3q + 6 = 0 \)

\(\Leftrightarrow \left( {q + 2} \right)\left( {{q^2} + 3} \right) = 0 \)

\(\Leftrightarrow q =  - 2.\)

Từ đó suy ra

                           \({u_1} = {1 \over 4}\)  và \(q =  - 2.\)

Vậy số hạng tổng quát của cấp số nhân đã cho là :

                            \({u_n} = {1 \over 4} \times {( - 2)^{n - 1}}.\)

sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan