Cho dãy số \(({u_n})\) xác định bởi
\({u_1} = 2\) và \({u_{n + 1}} = 3.u_n^2 - 10\) với mọi \(n \ge 1.\)
Chứng minh rằng dãy số \(({u_n})\) vừa là cấp số cộng vừa là cấp số nhân.
Giải
Ta chứng minh \(u_n=2\) (1) với mọi \(n \ge 1.\)
+) Với n = 1 ta có \(u_1=2\)
+) Giả thiết (1) đúng với n = k, tức là: \({u_k} = 2\)
Ta chứng mình (1) đúng với n = k + 1
\({u_{k + 1}} = 3.u_k^2 - 10 = {3.2^2} - 10 = 2\)
Vậy \({u_n} = 2\) với mọi \(n \ge 1\)
sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục