Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.72 trang 97 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Trong mặt phẳng tọa độ

Trong mặt phẳng tọa độ, trên parabol \(y = {x^2}\) lấy dãy các điểm \(({A_n})\) và \(({B_n})\) sao cho điểm \({A_1}\) có hoành độ dương và với mỗi số nguyên dương n, đường thẳng \({A_n}{B_n}\) có hệ số góc bằng \( - {1 \over 5}\) và đường thẳng \({B_n}{A_{n + 1}}\) có hệ số góc bằng \({1 \over 4}.\) (h.3.2).

Với mỗi số nguyên dương n, kí hiệu \({a_n}\) và \({b_n}\) tương ứng với hoành độ của \({A_n}\) và \({B_n}\).

Chứng minh rằng các dãy số \(({a_n})\) và\(({b_n})\) là các cấp số cộng. Hãy xác định công sai và số hạng tổng quát của mỗi cấp số cộng đó.

                                                      

Giải

Với mỗi \(n \ge 1,\) do \({A_n}\) và \({B_n}\)  nằm trên parabol \(y = {x^2}\) nên  \({A_n} = \left( {{a_n};a_n^2} \right)\) và \({B_n} = \left( {{b_n};b_n^2} \right)\). Từ đó:

- Do đường thẳng \({A_n}{B_n}\) có hệ số góc bằng \(- {1 \over 5}\) nên \({a_n} + {b_n} =  - {1 \over 5}\) với mọi \(n \ge 1;\)

- Do đường thẳng \({B_n}{A_{n + 1}}\) có hệ số góc bằng \({1 \over 4}\) nên \({a_{n + 1}} + {b_n} = {1 \over 4}\) với mọi \(n \ge 1;\)

Suy ra với mọi \(n \ge 1,\) ta có

           \({a_{n + 1}} - {a_n} = {9 \over {20}}\) và \({b_{n + 1}} - {b_n} =  - {9 \over {20}}.\)

Vì thế

- Dãy số \(({a_n})\) là một cấp số cộng với số hạng đầu \({a_1}\) và công sai \(d = {9 \over {20}};\)

- Dãy số \(({b_n})\) là một cấp số cộng với số hạng đầu \({b_1} =  - {1 \over 5} - {a_1}\) và công sai \(d =  - {9 \over {20}}.\)

Số hạng tổng quát : \({a_n} = {a_1} + \left( {n - 1} \right) \times {9 \over {20}}\) và \({b_n} =  - {1 \over 5} - {a_1} - \left( {n - 1} \right) \times {9 \over {20}}\).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan