Câu 4.1 trang 12 Sách bài tập (SBT) Toán 9 tập 2
Giải các hệ phương trình:
\(a)\left\{ {\matrix{
{{3 \over x} + {5 \over y} = - {3 \over 2}} \cr
{{5 \over x} - {2 \over y} = {8 \over 3}} \cr} } \right.\)
\(b)\left\{ {\matrix{
{{2 \over {x + y - 1}} - {4 \over {x - y + 1}} = - {{14} \over 5}} \cr
{{3 \over {x + y - 1}} + {2 \over {x - y + 1}} = - {{13} \over 5}} \cr} } \right.\)
Giải
\(a)\left\{ {\matrix{
{{3 \over x} + {5 \over y} = - {3 \over 2}} \cr
{{5 \over x} - {2 \over y} = {8 \over 3}} \cr} } \right.\)
Đặt \({1 \over x} = a;{1 \over y} = b.\) Điều kiện: \(x \ne 0;y \ne 0\)
Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{3a + 5b = - {3 \over 2}} \cr
{5a - 2b = {8 \over 3}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{6a + 10b = - 3} \cr
{15a - 6b = 8} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{30a + 50b = - 15} \cr
{30a - 12b = 16} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{62b = - 31} \cr
{6a + 10b = - 3} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = - {1 \over 2}} \cr
{6a + 10.\left( { - {1 \over 2}} \right) = - 3} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{b = - {1 \over 2}} \cr
{6a = 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = - {1 \over 2}} \cr
{a = {1 \over 3}} \cr} } \right. \cr} \)
Suy ra:
\(\left\{ {\matrix{
{{1 \over x} = {1 \over 3}} \cr
{{1 \over y} = - {1 \over 2}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 3} \cr
{y = - 2} \cr} } \right.\)
Hai giá trị của x và y thỏa mãn điều kiện bài toán.
Vậy hệ phương trình đã cho có một nghiệm (x; y) = (3; -2)
\(b)\left\{ {\matrix{
{{2 \over {x + y - 1}} - {4 \over {x - y + 1}} = - {{14} \over 5}} \cr
{{3 \over {x + y - 1}} + {2 \over {x - y + 1}} = - {{13} \over 5}} \cr} } \right.\)
Đặt \({1 \over {x + y - 1}} = a;{1 \over {x - y + 1}} = b.\) Điều kiện: \(x + y - 1 \ne 0;x - y + 1 \ne 0\)
Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{2a - 4b = - {{14} \over 5}} \cr
{3a + 2b = - {{13} \over 5}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2a - 4b = - {{14} \over 5}} \cr
{6a + 4b = - {{26} \over 5}} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{8a = - 8} \cr
{3a + 2b = - {{13} \over 5}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{a = - 1} \cr
{ - 3 + 2b = - {{13} \over 5}} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = - 1} \cr
{b = {1 \over 5}} \cr} } \right. \cr} \)
Suy ra:
\(\eqalign{
& \left\{ {\matrix{
{{1 \over {x + y - 1}} = - 1} \cr
{{1 \over {x - y + 1}} = {1 \over 5}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x + y - 1 = - 1} \cr
{x - y + 1 = 5} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x + y = 0} \cr
{x - y = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x = 4} \cr
{x - y = 4} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr
{2 - y = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr
{y = - 2} \cr} } \right. \cr} \)
Hai giá trị x = 2; y = -2 thỏa mãn điều kiện bài toán.
Vậy hệ phương trình đã cho có một nghiệm (x; y) = (2; -2)
Câu 4.2 trang 12 Sách bài tập (SBT) Toán 9 tập 2
Hãy xác định hàm số bậc nhất thỏa mãn mỗi điều kiện sau:
a) Đồ thị hàm số đi qua hai điểm M(-3; 1) và N(1; 2)
b) Đồ thị hàm số đi qua hai điểm \(M\left( {\sqrt 2 ;1} \right)\) và \(N\left( {3;3\sqrt 2 - 1} \right)\)
c) Đồ thị đi qua điểm M(-2; 9) và cắt đường thẳng (d): 3x – 5y = 1 tại điểm có hoành độ bằng 2.
Giải
Hàm số bậc nhất có dạng y = ax + b (a ≠ 0)
a) Đồ thị hàm số y = ax + b đi qua M(-3; 1) và N(1; 2) nên tọa độ của M và N nghiệm đúng phương trình hàm số.
Điểm M: 1 = -3a + b
Điểm N: 2 = a + b
Hai số a và b là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{ - 3a + b = 1} \cr
{a + b = 2} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{4a = 1} \cr
{a + b = 2} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = {1 \over 4}} \cr
{{1 \over 4} + b = 2} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{a = {1 \over 4}} \cr
{b = {7 \over 4}} \cr} } \right. \cr} \)
Hàm số cần tìm: $y = {1 \over 4}x + {7 \over 4}\)
b) Đồ thị hàm số y = ax + b đi qua \(M\left( {\sqrt 2 ;1} \right)\) và \(N\left( {3;3\sqrt 2 - 1} \right)\) nên tọa độ của M và N nghiệm đúng phương trình hàm số.
Điểm M: \(1 = a\sqrt 2 + b\)
Điểm N: \(3\sqrt 2 - 1 = 3a + b\)
Hai số a và b là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{a\sqrt 2 + b = 1} \cr
{3a + b = 3\sqrt 2 - 1} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{\left( {3 - \sqrt 2 } \right)a = 3\sqrt 2 - 2} \cr
{a\sqrt 2 + b = 1} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{\left( {3 - \sqrt 2 } \right)a = \sqrt 2 \left( {3 - \sqrt 2 } \right)} \cr
{a\sqrt 2 + b = 1} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = \sqrt 2 } \cr
{{{\left( {\sqrt 2 } \right)}^2} + b = 1} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{a = \sqrt 2 } \cr
{2 + b = 1} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{a = \sqrt 2 } \cr
{b = - 1} \cr} } \right. \cr} \)
Hàm số cần tìm: \(y = \sqrt 2 x - 1\)
c) Điểm N nằm trên đường thẳng (d): 3x – 5y = 1 có hoành độ bằng 2 nên tung độ của N bằng: \(3.2 - 5y = 1 \Leftrightarrow - 5y = - 5 \Leftrightarrow y = 1\)
Điểm N( 2; 1)
Đồ thị hàm số y = ax + b đi qua M(-2; 9) và N(2; 1) nên tọa độ của M và N nghiệm đúng phương trình hàm số.
Điểm M: 9 = -2a + b
Điểm N: 1 =2a + b
Hai số a và b là nghiệm của hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{ - 2a + b = 9} \cr
{2a + b = 1} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2b = 10} \cr
{2a + b = 1} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = 5} \cr
{2a + 5 = 1} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 5} \cr
{2a = - 4} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{b = 5} \cr
{a = - 2} \cr} } \right. \cr} \)
Hàm số cần tìm là y = - 2x + 5
Câu 4.3 trang 13 Sách bài tập (SBT) Toán 9 tập 2
Giải hệ phương trình:
\(\left\{ {\matrix{
{{{xy} \over {x + y}} = {2 \over 3}} \cr
{{{yz} \over {y + z}} = {6 \over 5}} \cr
{{{zx} \over {z + x}} = {3 \over 4}} \cr} } \right.\)
Giải
Điều kiện: \(x \ne - y;y \ne - z;z \ne - x\)
Từ hệ phương trình đã cho suy ra: $x \ne 0;y \ne 0;z \ne 0\)
\(\left\{ {\matrix{
{{{xy} \over {x + y}} = {2 \over 3}} \cr
{{{yz} \over {y + z}} = {6 \over 5}} \cr
{{{zx} \over {z + x}} = {3 \over 4}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{{{x + y} \over {xy}} = {3 \over 2}} \cr
{{{y + z} \over {yz}} = {5 \over 6}} \cr
{{{z + x} \over {zx}} = {4 \over 3}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{{1 \over x} + {1 \over y} = {3 \over 2}} \cr
{{1 \over y} + {1 \over z} = {5 \over 6}} \cr
{{1 \over z} + {1 \over x} = {4 \over 3}} \cr} } \right.\)
Đặt \({1 \over x} = a;{1 \over y} = b;{1 \over z} = c\)
Ta có hệ phương trình:
\(\left\{ {\matrix{
{a + b = {3 \over 2}} \cr
{b + c = {5 \over 6}} \cr
{c + a = {4 \over 3}} \cr} } \right.\)
Cộng từng vế ba phương trình ta có:
\(\eqalign{
& a + b + b + c + c + a = {3 \over 2} + {5 \over 6} + {4 \over 3} \cr
& \Leftrightarrow 2\left( {a + b + c} \right) = {9 \over 6} + {5 \over 6} + {8 \over 6} \cr
& \Leftrightarrow a + b + c = {{11} \over 6} \cr
& a = \left( {a + b + c} \right) - \left( {b + c} \right) = {{11} \over 6} - {5 \over 6} = 1 \cr
& b = \left( {a + b + c} \right) - \left( {c + a} \right) = {{11} \over 6} - {4 \over 3} = {{11} \over 6} - {8 \over 6} = {1 \over 2} \cr
& c = \left( {a + b + c} \right) - \left( {a + b} \right) = {{11} \over 6} - {3 \over 2} = {{11} \over 6} - {9 \over 6} = {1 \over 3} \cr} \)
Suy ra:
\(\left\{ {\matrix{
{{1 \over x} = 1} \cr
{{1 \over y} = {1 \over 2}} \cr
{{1 \over z} = {1 \over 3}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 1} \cr
{y = 2} \cr
{z = 3} \cr} } \right.\)
Vậy hệ phương trình đã cho có một nghiệm (x; y; z) = (1; 2; 3).
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục