Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.26 trang 137 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Tìm giới hạn của các dãy số

Tìm giới hạn của các dãy số \(\left( {{u_n}} \right)\) với

                     \({u_n} = {1 \over {\sqrt 1 }} + {1 \over {\sqrt 2 }} + ... + {1 \over {\sqrt n }}\)

Giải

\({1 \over {\sqrt n }}\) là số nhỏ nhất trong n số

                                 \(1,{1 \over {\sqrt 2 }},...,{1 \over {\sqrt n }}\)

Do đó

\({u_n} \ge \underbrace {{1 \over {\sqrt n }} + {1 \over {\sqrt n }} + ... + {1 \over {\sqrt n }}}_{n\text{ số hạng}} = n.{1 \over {\sqrt n }} = \sqrt n \)  với mọi n

Vì \(\lim \sqrt n  =  + \infty \) nên từ đó suy ra \(\lim {u_n} =  + \infty \)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan