Với a ≥ 0, b ≥ 0, chứng minh
\(\sqrt {{{a + b} \over 2}} \ge {{\sqrt a + \sqrt b } \over 2}\)
Gợi ý làm bài
Vì a ≥ 0 nên \(\sqrt a \) xác định, b ≥ 0 nên \(\sqrt b \) xác định
Ta có:
\(\eqalign{
& {\left( {\sqrt a - \sqrt b } \right)^2} \ge 0 \cr
& \Leftrightarrow a - 2\sqrt {ab} + b \ge 0 \Leftrightarrow \ge a + b \ge 2\sqrt {ab} \cr} \)
\( \Leftrightarrow a + b + a + b \ge a + b + 2\sqrt {ab} \)
\( \Leftrightarrow 2(a + b) \ge {\left( {\sqrt a } \right)^2} + 2\sqrt {ab} + {\left( {\sqrt b } \right)^2}\)
\(\eqalign{
& \Leftrightarrow 2(a + b) \ge {\left( {\sqrt a + \sqrt b } \right)^2} \cr
& \Leftrightarrow {{a + b} \over 2} \ge {{{{\left( {\sqrt a + \sqrt b } \right)}^2}} \over 4} \cr} \)
\(\eqalign{
& \Leftrightarrow \sqrt {{{a + b} \over 2}} \ge \sqrt {{{{{\left( {\sqrt a + \sqrt b } \right)}^2}} \over 4}} \cr
& \Leftrightarrow \sqrt {{{a + b} \over 2}} \ge {{\sqrt a + \sqrt b } \over 2} \cr} \)
Sachbaitap.net
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục