Không dùng bảng lượng giác hoặc máy tính bỏ túi,hãy so sánh:
a) \(tg50^\circ 28'\) và \(tg63^\circ \); b) \(\cot g14^\circ \) và \(\cot g35^\circ 12'\);
c) \(tg27^\circ \) và \(\cot g27^\circ \); d) \(tg65^\circ \) và \(\cot g65^\circ \).
Gợi ý làm bài:
a) Với \(0^\circ < \alpha < 90^\circ \) ta có \(\alpha \) tăng thì tg\(\alpha \) tăng
Ta có: \(50^\circ 28' < 63^\circ ,\) suy ra: \(tg50^\circ 28' < tg63^\circ \)
b) Với \(0^\circ < \alpha < 90^\circ \) ta có \(\alpha \) tăng thì cotg\(\alpha \) giảm
Ta có: \(14^\circ < 35^\circ 12',\) suy ra: cotg14°> cotg35°12’
c) Với \(0^\circ < \alpha < 90^\circ \) ta có \(\alpha \) tăng thì tg\(\alpha \) tăng
Ta có: \(27^\circ + 63^\circ = 90^\circ ,\) suy ra: \(\cot g27^\circ = tg63^\circ \)
Vì \(27^\circ < 63^\circ \) nên \(tg27^\circ < tg63^\circ \) hay \(tg27^\circ < \cot g27^\circ \)
d) Với \(0^\circ < \alpha < 90^\circ \) ta có \(\alpha \) tăng thì cotg\(\alpha \) giảm
Ta có: \(65^\circ + 25^\circ = 90^\circ \) nên tg65° =cotg25°
Vì 25 < 65 nên cotg25 > cotg65 hay tg65° > cotg65°.
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục