Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 48. Trang 112 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
4 trên 3 phiếu

Không dùng bảng lượng giác hoặc máy tính bỏ túi, hãy so sánh:

a. \(tg28^\circ \) và sin28°                         b. cotg42° và cos42°

c. cotg73° và sin17°                     d. tg32° và cos58°

Gợi ý làm bài:

a) \(tg28^\circ  = {{\sin 28^\circ } \over {\cos 28^\circ }} = \sin 28^\circ .{1 \over {\cos 28^\circ }}\)  (1)

Vì 0 < cos28° < 1 nên \({1 \over {\cos 28^\circ }} > 1 \Rightarrow \sin 28^\circ .{1 \over {\cos 28^\circ }} > \sin 28^\circ \)  (2)

Từ (1) và (2) suy ra: tg28° > sin28°

b) Ta có: \(\cot g42^\circ  = {{\cos 42^\circ } \over {\sin 42^\circ }} = c{\rm{os42}}^\circ .{1 \over {\sin 42^\circ }}\)   (1)

Vì 0 < sin42° < 1 nên \({1 \over {\sin 42^\circ }} > 1 \Rightarrow \cos 42^\circ .{1 \over {\sin 42^\circ }} > \cos 42^\circ \)  (2)

Từ (1) và (2) suy ra: cotg42° > cos42°

c) Ta có: 17°  +73° =90°   (1)

\(\cot g73^\circ  = {{\cos 73^\circ } \over {\sin 73^\circ }} = \cos 73^\circ .{1 \over {\sin 73^\circ }}\)    (2)

Vì 0 <sin73° <1 nên \({1 \over {\sin 73^\circ }} > 1 \Rightarrow c{\rm{os73}}^\circ .{1 \over {\sin 73^\circ }} > c{\rm{os73}}^\circ \) (3)

Từ (1), (2) và (3) suy ra: cotg73° > sin17°

d) Ta có: 32° +58° = 90°    (1)

\(tg32^\circ  = {{\sin 32^\circ } \over {\cos 32^\circ }} = \sin 32^\circ .{1 \over {\cos 32^\circ }}\)   (2)

Vì 0 < cos32° < 1 nên \({1 \over {{\rm{cos32}}^\circ }} > 1 \Rightarrow \sin 32^\circ .{1 \over {{\rm{cos32}}^\circ }} > \sin 32^\circ \)  (3)

Từ (1), (2) và (3) suy ra: tg32° > cos58°

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan