Xem thêm: Bài 2, 3, 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Trong mặt phẳng (P), cho hình thoi ABCD với \(AB = a,AC = {{2{\rm{a}}\sqrt 6 } \over 3}\). Trên đường thẳng vuông góc với mặt phẳng (P) tại giao điểm tại O của hai đường chéo hình thoi, ta lấy điểm S sao cho SB = a. Chứng minh rằng:
a) Tam giác ASC vuông.
b) Mặt phẳng (SAB) và mặt phẳng (SAD) vuông góc với nhau.
Trả lời
a) Ta có \(A{C^2} + B{{\rm{D}}^2} = 4{{\rm{a}}^2},AC = {{2{\rm{a}}\sqrt 6 } \over 3}\)
nên \(B{{\rm{D}}^2} = {{4{{\rm{a}}^2}} \over 3} \Rightarrow O{B^2} = {{{a^2}} \over 3}\)
Xét tam giác vuông SOB, ta có
\(S{O^2} = S{B^2} - O{B^2} = {{2{{\rm{a}}^2}} \over 3} \Rightarrow SO = {{a\sqrt 6 } \over 3}\)
Vậy tam giác SAC có trung tuyến SO bằng nửa AC nên SAC là tam giác vuông tại S.
b) Trong mặt phẳng (SOA) kẻ OA1 vuông góc với SA thì \(SA \bot mp\left( {{A_1}B{\rm{D}}} \right)\), từ đó \(\widehat {B{A_1}D}\) hoặc \({180^0} - \widehat {B{A_1}D}\), là góc giữa hai mặt phẳng (SAB) và (SAD).
Ta có
\(\eqalign{ & O{A_1} = {{OA.OS} \over {SA}} = {{OA.OS} \over {\sqrt {O{A^2} + O{S^2}} }} \cr & = {1 \over 2}.{{a\sqrt 6 } \over 3}.\sqrt 2 = {{a\sqrt 3 } \over 3} \cr} \)
Mặt khác \(B{\rm{D}} = {{2a\sqrt 3 } \over 3}\), từ đó \(\widehat {B{A_1}D} = {90^0}\) hay hai mặt phẳng (SAB) và (SAD) vuông góc.
Sachbaitap.com
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục