Xem thêm: Bài 2, 3, 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Cho tam giác cân ABC, \(AB = AC = a,\widehat {BAC} = {120^0}\). Xét hai tia cùng chiều Bt, Ct’ và vuông góc với mp(ABC). Lấy điểm B’ thuộc Bt, C’ thuộc Ct’ sao cho BB’ = 3CC’ và \(C’ ≢ C\).
a) Chứng minh rằng giao tuyến của mp(ABC) và mp(AB’C’) cố định khi B’. C’ thay đổi.
b) Khi BB’ = a, tính góc giữa hai mặt phẳng (AB’C’) và (ABC), tính diện tích tam giác AB’C’.
Trả lời
a) Vì BB’ = 3CC’ nên đường thẳng B’C’ cắt BC tại điểm I thì \(BI = {3 \over 2}BC\).
Như vậy I là điểm cố định, mặt khác giao tuyến của mp(AB’C’) và mp(ABC) là AI. Như vậy, khi B’, C’ thay đổi thì giao tuyến của mp(AB’C’) và mp(ABC) là đường thẳng AI cố định.
b) Khi BB’ = a thì \(CC' = {a \over 3}\)
Dễ thấy: \(BC = a\sqrt 3 \)
Do \(CC' = {1 \over 2}BC\)
nên \(CI = {{a\sqrt 3 } \over 2}\)
Ta có: \(AJ = {a \over 2}\left( {AJ \bot BC,J \in BC} \right)\) và \(IJ = a\sqrt 3 \).
Kẻ \(CK \bot AI\), do \(C'C \bot \left( {ABC} \right)\) nên \(C'K \bot AI\).
Vậy \(\widehat {CKC'}\) là góc giữa mp(AB’C’) và mp(ABC).
Ta có:
\(\eqalign{ & {{CK} \over {AJ}} = {{CI} \over {AI}}; \cr & A{I^2} = A{J^2} + J{I^2} = {{{a^2}} \over 4} + 3{a^2} = {{13{a^2}} \over 4} \cr} \)
nên \(AI = {{a\sqrt {13} } \over 2}\)
Từ đó \(CK = {a \over 2}.{{a\sqrt 3 } \over 2}.{2 \over {a\sqrt {13} }} = {{a\sqrt 3 } \over {2\sqrt {13} }}\)
Đặt \(\widehat {CKC'} = \varphi \) thì \(\tan \varphi = {{CC'} \over {CK}} = {a \over 3}.{{2\sqrt {13} } \over {a\sqrt 3 }} \Leftrightarrow \tan \varphi = {{2\sqrt {39} } \over 9}\)
Như thế góc giữa mp(AB’C’) và mp(ABC) là φ mà \(\tan \varphi = {{2\sqrt {39} } \over 9}\) .
Tam giác AB’C’ có hình chiếu trên mp(ABC) là tam giác ABC mà \({S_{ABC}} = {{{a^2}\sqrt 3 } \over 4}\).
Vậy \({S_{AB'C'}} = {{{S_{ABC}}} \over {\cos \varphi }} = {{{a^2}\sqrt {79} } \over {12}}\)
(Tính cosφ nhờ \(\tan \varphi = {{2\sqrt {39} } \over 9}\) được \(\cos\varphi = {{3\sqrt 3 } \over {\sqrt {79} }}\))
Sachbaitap.com
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục