Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.61 trang 144 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Tìm các khoảng và nửa khoảng trên đó mỗi hàm số sau đây liên tục:

Tìm các khoảng và nửa khoảng trên đó mỗi hàm số sau đây liên tục:

a) \(f\left( x \right) = {{x + 1} \over {{x^2} + 7x + 10}}\)                 b)\(f\left( x \right) = \sqrt {3x - 2} \)

c) \(f\left( x \right) = {x^2} + 2\sqrt x  - 3\)        d) \(f\left( x \right) = \left( {x + 1} \right)\sin x.\)

Giải

a) Hàm số xác định khi và chỉ khi

             \({x^2} + 7x + 10 \ne 0 \Leftrightarrow x \ne  - 2\) và \(x \ne  - 5.\)

Hàm số \(f\) liên tục trên khoảng \(\left( { - \infty ; - 5} \right),\left( { - 5; - 2} \right)\)  và \(\left( { - 2; + \infty } \right).\)

b) \(\left[ {{2 \over 3}; + \infty } \right);\)                               c) \(\left[ {0; + \infty } \right);\)

d) Hai hàm số \(u\left( x \right) = x + 1\)  và \(v(x) = \sin x\)  đều liên tục trên R Do đó hàm số \(f\left( x \right) = \left( {x + 1} \right)\sin x\)  là tích của hai hàm số trên cũng liên tục trên R

 Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan