Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.67 trang 145 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Chứng minh rằng phương trình có ít nhất một nghiệm âm

Chứng minh rằng phương trình

                         \({x^3} + 1000{x^2} + 0,1 = 0\)

Có ít nhất một nghiệm âm.

Giải

Hàm số \(f\left( x \right) = {x^3} + 1000{x^2} + 0,1\)  liên tục trên R. Ta có \(f\left( 0 \right) = 0,1 > 0.\)  Vì \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) =  - \infty \)  nên tồn tại một số âm a sao cho \(f\left( a \right) < 0.\) Vì \(f\left( 0 \right)f\left( a \right) < 0\)  nên, theo hệ quả của định lí về giá trị trung gian của hàm số liên tục, tồn tại một số thực \(c \in \left( {a;0} \right)\)  sao cho \(f\left( c \right) = 0.\)  Số \(x = c\) là một nghiệm âm của phương trình đã cho.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan