5. Trang 6 Sách bài tập Hình Học 11 nâng cao.
Cho tứ giác ABCD nội tiếp đường tròn (O; R) trong đó AD = R. Dựng các hình bình hành DABM và DACN. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác DNM nằm trên (O; R).
Giải
Theo giả thiết ta có:
\(\overrightarrow {AD} = \overrightarrow {BM} = \overrightarrow {CN} \)
Vì vậy, phép tịnh tiến theo vecto \(\overrightarrow {AD} \) biến tam giác ABC thành tam giác DMN. Suy ra, nếu O’ là tâm đường tròn ngoại tiếp tam giác DMN thì phép tịnh tiến đó biến O thành O’, tức là:
\(\overrightarrow {OO'} = \overrightarrow {AD} \)
Do đó:
OO' = AD = R
Và vì vậy O’ nằm trên (O; R).
sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục