Cho hàm số
f (x) = x3 (C)
a) Tại những điểm nào của (C) thì tiếp tuyến của (C) có hệ số góc bằng 1.
b) Liệu có tiếp tuyến nào của (C) mà tiếp tuyến đó có hệ số góc bằng âm?
Giải
a) \(\left( {{{\sqrt 3 } \over 3};{{\sqrt 3 } \over 9}} \right)\) và \(\left( {{{ - \sqrt 3 } \over 3};{{ - \sqrt 3 } \over 9}} \right)\)
b) Muốn có tiếp tuyến của đồ thị hàm số \(y = {x^3}\) mà hệ số góc của tiếp tuyến đó âm thì phải tồn tại điểm \({x_0}\) sao cho \(f'\left( {{x_0}} \right) < 0.\) Ở đây \(f'\left( x \right) = 3{x^2} \ge 0\,\,\left( {\forall x \in R} \right)\); Vậy không có tiếp tuyến nào của đồ thị hàm số đã cho mà hệ số góc của nó âm.
Sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục