Cho parabol (P) có phương trình
y = f (x) = kx2 (k là hằng số khác 0)
Và A là một điểm thuộc (P) có hoành độ là \(a\ne 0\) .
Hãy xác định các tọa độ giao điểm của trục Ox với tiếp tuyến tại A của (P). Từ đó hãy suy ra một cách đơn giản để vẽ tiếp tuyến này.
Giải
Ta có
\(y' = 2kx\,\,\left( {\forall x \in R} \right)\)
Phương trình tiếp tuyến tại điểm \(A\left( {a;k{a^2}} \right)\) của parabol (P) là
\(y = 2ka\left( {x - a} \right) + k{a^2} = 2kax - k{a^2}\,\)
Gọi I là giao điểm của tiếp tuyến này với trục Ox. Hoành độ điểm I là nghiệm của phương trình
\(2kax - k{a^2}=0 \Leftrightarrow x = {a \over 2}\)(vì \(ak \ne 0\))
Suy ra \(I\left( {{a \over 2};0} \right)\)
Từ đó để vẽ tiếp tuyến tại điểm \(A\left( {a;k{a^2}} \right)\) của parabol (P), ta nối điểm A với điểm \(I\left( {{a \over 2};0} \right)\); đường thẳng AI là tiếp tuyến cần phải tìm.
Sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục