Cho hai số A và B sao cho
\(f\left( x \right) = {{x - 5} \over {{x^2} - 1}} = {A \over {x + 1}} + {B \over {x - 1}}\,\,\left( {\forall x \ne \pm 1} \right)\)
a) Tìm A và B
b) Tính \({f^{\left( n \right)}}\left( x \right)\,\,\left( {x \in N^*} \right)\)
Giải
Ta có
\({{x - 5} \over {{x^2} - 1}} = {{A\left( {x - 1} \right) + B\left( {x + 1} \right)} \over {{x^2} - 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x \ne \pm 1} \right)\)
\(\eqalign{& \Leftrightarrow \left( {A + B} \right)x + B - A \equiv x - 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x \ne \pm 1} \right) \cr& \Leftrightarrow \left\{ \matrix{A + B = 1 \hfill \cr B-A = - 5 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{A = 3 \hfill \cr B = - 2 \hfill \cr} \right.. \cr} \)
Vậy
\(f\left( x \right) = {{x - 5} \over {{x^2} - 1}} = {3 \over {x + 1}} - {2 \over {x - 1}}\)
Áp dụng công thức đạo hàm cấp n ta được:
\({\left( {{1 \over {ax + b}}} \right)^{\left( n \right)}} = {{{{\left( { - 1} \right)}^n}.n!.{a^n}} \over {{{\left( {ax + b} \right)}^{n + 1}}}}\)
Ta được
\({f^{\left( n \right)}}\left( x \right) = 3{{{{\left( { - 1} \right)}^n}n!} \over {{{\left( {x + 1} \right)}^{n + 1}}}} - 2{{{{\left( { - 1} \right)}^n}.n!} \over {{{\left( {x - 1} \right)}^{n + 1}}}}\)
Sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục