57. Trang 61 Sách Bài tập Hình học 11 Nâng cao
Cho hình chóp cụt tứ giác ABCD.A’B’C’D’, có các cạnh bên là AA’, BB’, CC’, DD’ và có đáy lớn ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là giao điểm của các cặp đường thẳng AD’ và BC’, CB’ và DA’, BA’ và CD’, AB’ và DC’. Chứng minh bốn điểm M, N, P, Q đồng phẳng.
Giải
Gọi S là điểm đồng quy của các cạnh AA’, BB’, CC’, DD’. Vì BC song song với AD nên giao tuyến \(\Delta\) của hai mặt phẳng (BB’C’C), (AA’D’D) đi qua S và song song với BC. Rõ ràng M, N là hai điểm chung của hai mặt phẳng nói trên. Do đó M, N đều thuộc \(\Delta\). Lí luận tương tự, hai điểm P, Q thuộc giao tuyến \(\Delta'\) của hai mặt phẳng (ABB’A’) và (CDD’C’) (giao tuyến này đi qua S và song song với AB).
Vậy bốn điểm M, N, P,Q cùng nằm trên mp \(\left( {\Delta ,\Delta '} \right)\).
sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục