Cho hình chóp A.ABCD có cạnh SA = x, tất cả các cạnh còn lại có độ dài bằng a.
a) Chứng minh rằng SAC là tam giác vuông.
b) Tính đường cao SH của hình chóp đã cho.
Trả lời
a) Gọi O là giao điểm của AC và BD thì \(OA = OC,OB = O{\rm{D}}\).
Vì \(SB = S{\rm{D}} = CB = C{\rm{D}}\) nên \(\Delta BC{\rm{D}} = \Delta B{\rm{SD}}\), từ đó \(SO = OC = OA\).
Vậy SAC là tam giác vuông tại S.
b) \(\left. \matrix{ AC \bot B{\rm{D}} \hfill \cr {\rm{SO}} \bot {\rm{BD}} \hfill \cr} \right\} \Rightarrow B{\rm{D}} \bot \left( {SAC} \right)\),
từ đó \(\left( {SAC} \right) \bot \left( {ABC{\rm{D}}} \right)\).
Vậy nếu kẻ đường cao SH của tam giác SAC thì \(SH \bot \left( {ABC{\rm{D}}} \right)\),
do đó \(d\left( {S;mp\left( {ABC{\rm{D}}} \right)} \right) = SH = {{SA.SC} \over {AC}} = {{a.x} \over {\sqrt {{a^2} + {x^2}} }}\).
Sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục