6. Trang 51 sách bài tập Hình học 11 nâng cao.
Cho hai điểm cố định A, B nằm về hai phía của mp (P) cố định. Gọi M là một điểm chuyển động bất kì trong không gian. Chứng minh rằng nếu hai đường thẳng MA, MB lần lượt cắt mp (P) tại hai điểm A’, B’ phân biệt thì đường thẳng A’B’ đi qua một điểm cố định.
Giải
Vì A và B nằm về hai phía đối với mp(P) nên đường thẳng AB cắt (P) tại một điểm I. Khi đó I cố định.
Nếu M nằm trên đường thẳng AB thì \(A' \equiv B' \equiv I.\)
Nếu M không nằm trên đường thẳng AB thì mp(MAB). Khi đó
\(\left. \matrix{
A' \in AM,\,AM \subset mp\left( {MAB} \right) \hfill \cr
\Rightarrow A' \in mp\left( {MAB} \right) \hfill \cr
B' \in BM,\,BM \subset mp\left( {MAB} \right) \hfill \cr
\Rightarrow B' \in mp\left( {MAB} \right) \hfill \cr
I \in AB,\,AB \subset mp\left( {MAB} \right) \hfill \cr
\Rightarrow I \in mp\left( {MAB} \right) \hfill \cr} \right\}\,\,(1)\)
Mặt khác, các điểm A’, B’, I đều thuộc mp(P). (2)
Từ (1) và (2) suy ra ba điểm A’, B’, I thẳng hàng, tức là đường thẳng A’B’ đi qua điểm cố định I.
sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục