Trên một đường tròn định hướng cho ba điểm \(A, M, N\) sao cho sđ cung \(AM = \dfrac{\pi }{3}\); sđ cung \(AN = \dfrac{{3\pi }}{4}\). Gọi \(P\) là điểm thuộc đường tròn đó để tam giác \(MNP\) là tam giác cân. Hãy tìm số đo cung \(AP\).
Giải:
Cách 1. Dùng hình vẽ, dễ dàng suy ra các kết quả sau
•.\(PN = PM \Leftrightarrow \) sđ cung \(AP = \dfrac{{13\pi }}{{24}} + k\pi \left( {k \in Z} \right)\) (có hai điểm P như thế ứng với k chẵn và k lẻ)
•.\(NP = NM \Leftrightarrow \) sđ cung \(AP = \dfrac{{7\pi }}{6} + k2\pi \left( {k \in Z} \right)\).
•.\(MP = MN \Leftrightarrow \) sđ cung \(AP = - \dfrac{\pi }{{12}} + k2\pi \left( {k \in Z} \right)\).
Cách 2. Với ba điểm phân biệt \(M, N, P\) trên đường tròn định hướng tâm O gốc A, dễ thấy \(PM = PN\) khi và chỉ khi \(\widehat {POM} = \widehat {PON}\), do M khác N, ta có sđ \((OP, OM) +\) sđ \((OP, ON)\) = \(k2\pi \left( {k \in Z} \right)\), tức là sđ \((OA, OM)\) – sđ \((OA, OP)\)+ sđ \((OA, ON)\) – sđ \((OA, OP)\) =\(k2\pi \left( {k \in Z} \right)\).
Vậy \(PM = PN \Leftrightarrow \) sđ \(AP = \dfrac{1}{2}\)(sđ cung \(AM\) + sđ cung \(AN\)) + \(k\pi \left( {k \in Z} \right)\).
Từ đó suy ra :
•.\(PN = PM \Leftrightarrow \) sđ cung \(AP = \dfrac{{13\pi }}{{24}} + k\pi \left( {k \in Z} \right)\) (có hai điểm \(P\) như thế ứng với \(k\) chẵn và \(k\) lẻ)
•.\(NP = NM \Leftrightarrow \) sđ cung \(AP = \dfrac{{7\pi }}{6} + k2\pi \left( {k \in Z} \right)\).
•.\(MP = MN \Leftrightarrow \) sđ cung \(AP = - \dfrac{\pi }{{12}} + k2\pi \left( {k \in Z} \right)\).
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục