Thực hiện các phép tính sau bằng hai cách : dùng tính chất phân phối của phép nhân đối với phép cộng và không dùng tính chất này :
a. \({{{x^3} - 1} \over {x + 2}}.\left( {{1 \over {x - 1}} - {{x + 1} \over {{x^2} + x + 1}}} \right)\)
b. \({{{x^3} + 2{x^2} - x - 2} \over {2x + 10}}\left( {{1 \over {x - 1}} - {2 \over {x + 1}} + {1 \over {x + 2}}} \right)\)
Giải:
Cách 1 :
a. \({{{x^3} - 1} \over {x + 2}}.\left( {{1 \over {x - 1}} - {{x + 1} \over {{x^2} + x + 1}}} \right)\)
\(\eqalign{ & = {{{x^3} - 1} \over {x + 2}}.{1 \over {x - 1}} - {{{x^3} - 1} \over {x + 2}}.{{x + 1} \over {{x^2} + x + 1}} \cr & = {{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)} \over {\left( {x + 2} \right)\left( {x - 1} \right)}} - {{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\left( {x + 1} \right)} \over {\left( {x + 2} \right)\left( {{x^2} + x + 1} \right)}} \cr & = {{{x^2} + x + 1} \over {x + 2}} - {{{x^2} - 1} \over {x + 2}} = {{{x^2} + x + 1 - {x^2} + 1} \over {x + 2}} = {{x + 2} \over {x + 2}} = 1 \cr} \)
Cách 2 : \({{{x^3} - 1} \over {x + 2}}.\left( {{1 \over {x - 1}} - {{x + 1} \over {{x^2} + x + 1}}} \right)\)
\(\eqalign{ & = {{{x^3} - 1} \over {x + 2}}.\left[ {{{{x^2} + x + 1} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - {{\left( {x + 1} \right)\left( {x - 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}} \right] \cr & = {{{x^3} - 1} \over {x + 2}}.{{{x^2} + x + 1 - {x^2} + 1} \over {{x^3} - 1}} = {{{x^3} - 1} \over {x + 2}}.{{x + 2} \over {{x^3} - 1}} = 1 \cr} \)
b.
Cách 1 : \({{{x^3} + 2{x^2} - x - 2} \over {2x + 10}}\left( {{1 \over {x - 1}} - {2 \over {x + 1}} + {1 \over {x + 2}}} \right)\)
\(\eqalign{ & = {{{x^2}\left( {x + 2} \right) - \left( {x + 2} \right)} \over {2x + 10}}.\left( {{1 \over {x - 1}} - {2 \over {x + 1}} + {1 \over {x + 2}}} \right) \cr & = {{\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}}.{1 \over {x - 1}} - {{\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}}.{2 \over {x + 1}} \cr&+ {{\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}}.{1 \over {x + 2}} \cr & = {{\left( {x + 2} \right)\left( {x + 1} \right)} \over {2\left( {x + 5} \right)}} - {{2\left( {x + 2} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}} + {{\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}} \cr & = {{{x^2} + 2x + x + 2 - 2{x^2} + 2x - 4x + 4 + {x^2} - 1} \over {2\left( {x + 5} \right)}} = {{x + 5} \over {2\left( {x + 5} \right)}} = {1 \over 2} \cr} \)
Cách 2 : \({{{x^3} + 2{x^2} - x - 2} \over {2x + 10}}\left( {{1 \over {x - 1}} - {2 \over {x + 1}} + {1 \over {x + 2}}} \right)\)
\(\eqalign{ & = {{\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}}.{{\left( {x + 1} \right)\left( {x + 2} \right) - 2\left( {x - 1} \right)\left( {x + 2} \right) + \left( {x + 1} \right)\left( {x - 1} \right)} \over {\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)}} \cr & = {{\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}}.{{{x^2} + 2x + x + 2 - 2{x^2} - 4x + 2x + 4 + {x^2} - 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)\left( {x + 2} \right)}} \cr & = {{\left( {x + 2} \right)\left( {x + 1} \right)\left( {x - 1} \right)} \over {2\left( {x + 5} \right)}}.{{x + 5} \over {\left( {x + 1} \right)\left( {x - 1} \right)\left( {x + 2} \right)}} = {1 \over 2} \cr} \)
Sachbaitap.com
>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục