Xem thêm: Bài tập ôn chương IV - Hàm số bậc hai. Phương trình bậc hai một ẩn.
Khoảng cách giữa hai bến sông A và B là 30km. Một ca nô đi từ A đến B, nghỉ 40 phút ở B rồi lại trở về bến A. Thời gian kể từ lúc đi đến lúc trở về đến A là 6 giờ. Tính vận tốc của ca nô khi nước yên lặng, biết rằng vận tốc của dòng nước là 30km/h.
Giải
Gọi vận tốc ca nô khi nước yên lặng là x (km/h); điều kiện: x > 3
Thì vận tốc lúc đi xuôi dòng là x + 3 (km/h)
Vận tốc ca nô đi ngược dòng là x – 3 (km/h)
Thời gian đi xuôi dòng là \({{30} \over {x + 3}}\) giờ
Thời gian đi ngược dòng là \({{30} \over {x - 3}}\) giờ
Ta có phương trình:
\(\eqalign{
& {{30} \over {x + 3}} + {{30} \over {x - 3}} = {{16} \over 3} \cr
& \Rightarrow 90\left( {x - 3} \right) + 90\left( {x + 3} \right) = 16\left( {x + 3} \right)\left( {x - 3} \right) \cr
& \Leftrightarrow 90x - 270 + 90x + 270 = 16{x^2} - 144 \cr
& \Leftrightarrow 16{x^2} - 180x - 144 = 0 \cr
& \Leftrightarrow 4{x^2} - 45x - 36 = 0 \cr
& \Delta = {\left( { - 45} \right)^2} - 4.4.\left( { - 36} \right) = 2025 + 675 = 2601 > 0 \cr
& \sqrt \Delta = \sqrt {2601} = 51 \cr
& {x_1} = {{45 + 51} \over {2.4}} = {{96} \over 8} = 12 \cr
& {x_2} = {{45 - 51} \over {2.4}} = {{ - 6} \over 8} = - {3 \over 4} \cr} \)
\({x_2} = - {3 \over 4} < 0\) không thỏa mãn điều kiện: loại.
Vậy vận tốc ca nô khi nước yên lặng là 12 km/h.
Sachbaitap.com
>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com
>> Chi tiết khoá học xem: TẠI ĐÂY
Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục