Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 77 trang 129 Sách bài tập Hình học 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 77 trang 129 Sách bài tập Hình học 11 Nâng cao

Cho hình chóp S.ABC có đáy là tam giác đều, SA = SB = SC = a và cùng tạo với mặt phẳng (ABC) góc 60°. Một mặt phẳng song song với hai cạnh chéo nhau của hình chóp và cắt hình chóp đó theo thiết diện là hình vuông. Tính diện tích thiết diện.

Trả lời

 

Giả sử H là tâm của tam giác đều.

Từ SA = SB = SC nên \(SH \bot \left( {ABC} \right)\) và \(\widehat {SAH} = {60^0}\).

Giả sử mặt phẳng song song với SA, CD và thiết diện thu được là hình vuông MNPQ.

Khi đó, nếu kí hiệu cạnh hình vuông là x thì:

\(\eqalign{  & {x \over {SA}} = {{CQ} \over {C{\rm{S}}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)  \cr  & {x \over {BC}} = {{SQ} \over {SC}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \cr} \)

Từ (1), (2) suy ra:

\(\eqalign{  & x\left( {{1 \over {SA}} + {1 \over {BC}}} \right) = {{CQ + Q{\rm{S}}} \over {C{\rm{S}}}} = 1  \cr  &  \Rightarrow x= {{SA.BC} \over {SA + BC}} = {{a.BC} \over {a + BC}} \cr} \)

Mặt khác \(HA = SA\cos {60^0} = {a \over 2}\).

mà \(HA = {{BC\sqrt 3 } \over 3}\).

Suy ra \(BC = {{a\sqrt 3 } \over 2}\).

Từ đó \(x = {{a.{{a\sqrt 3 } \over 2}} \over {a + {{a\sqrt 3 } \over 2}}} = {{a\sqrt 3 } \over {2 + \sqrt 3 }} = a\sqrt 3 \left( {2 - \sqrt 3 } \right)\).

Vậy \({S_{MNPQ}} = {\left[ {a\sqrt 3 \left( {2 - \sqrt 3 } \right)} \right]^2} = 3{{\rm{a}}^2}{\left( {2 - \sqrt 3 } \right)^2}\).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan