Chứng minh :
\(\eqalign{
& \sqrt {{1^3} + {2^3}} = 1 + 2; \cr
& \sqrt {{1^3} + {2^3} + {3^3}} = 1 + 2 + 3; \cr
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} = 1 + 2 + 3 + 4. \cr} \)
Viết tiếp một số đẳng thức tương tự.
Gợi ý làm bài
Ta có : \(\sqrt {{1^3} + {2^3}} = \sqrt {1 + 8} = \sqrt 9 = 3\)
1 + 2 = 3
Vậy \(\sqrt {{1^3} + {2^3}} = 1 + 2\)
Ta có :
\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3}} = \sqrt {1 + 8 + 27} \cr
& = \sqrt {36} = 6 \cr} \)
Vậy \(\sqrt {{1^3} + {2^3} + {3^3}} = 1 + 2 + 3\)
Ta có :
\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} \cr
& = \sqrt {1 + 8 + 27 + 64} \cr
& = \sqrt {100} = 10 \cr} \)
1 + 2 + 3 + 4 = 10
Vậy
\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} \cr
& = 1 + 2 + 3 + 4 \cr} \)
Một số đẳng thức tương tự:
\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3}} = 1 + 2 + 3 + 4 + 5 \cr
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3} + {6^3}} = 1 + 2 + 3 + 4 + 5 + 6 \cr} \)
Sachbaitap.net
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục