Chứng minh :
\(\eqalign{
& \sqrt {{1^3} + {2^3}} = 1 + 2; \cr
& \sqrt {{1^3} + {2^3} + {3^3}} = 1 + 2 + 3; \cr
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} = 1 + 2 + 3 + 4. \cr} \)
Viết tiếp một số đẳng thức tương tự.
Gợi ý làm bài
Ta có : \(\sqrt {{1^3} + {2^3}} = \sqrt {1 + 8} = \sqrt 9 = 3\)
1 + 2 = 3
Vậy \(\sqrt {{1^3} + {2^3}} = 1 + 2\)
Ta có :
\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3}} = \sqrt {1 + 8 + 27} \cr
& = \sqrt {36} = 6 \cr} \)
Vậy \(\sqrt {{1^3} + {2^3} + {3^3}} = 1 + 2 + 3\)
Ta có :
\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} \cr
& = \sqrt {1 + 8 + 27 + 64} \cr
& = \sqrt {100} = 10 \cr} \)
1 + 2 + 3 + 4 = 10
Vậy
\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3}} \cr
& = 1 + 2 + 3 + 4 \cr} \)
Một số đẳng thức tương tự:
\(\eqalign{
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3}} = 1 + 2 + 3 + 4 + 5 \cr
& \sqrt {{1^3} + {2^3} + {3^3} + {4^3} + {5^3} + {6^3}} = 1 + 2 + 3 + 4 + 5 + 6 \cr} \)
Sachbaitap.net
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục