Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 80 trang 119 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
3.9 trên 16 phiếu

Hãy tính sinα và tgα, nếu

Hãy tính sinα và tgα, nếu:

a) \(\cos \alpha  = {5 \over {13}}\);

b) \(\cos \alpha  = {{15} \over {17}}\);

c) \(\cos \alpha  = 0,6.\)

Gợi ý làm bài

a) \(cos \alpha  = {5 \over {13}}\)

* Ta có:

\({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\)

Suy ra: 

\(\eqalign{
& {\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - {\left( {{5 \over {13}}} \right)^2} \cr
& = 1 - {{25} \over {169}} = {{144} \over {169}} \cr} \)

Vì \(\sin \alpha  > 0\) nên \(\sin \alpha  = \sqrt {{{144} \over {169}}}  = {{12} \over {13}}\)

* \(tg\alpha  = {{\sin \alpha } \over {\cos \alpha }} = {{{{12} \over {13}}} \over {{5 \over {13}}}} = {{12} \over {13}}.{{13} \over 5} = {{12} \over 5}\)

b) \(\cos \alpha  = {{15} \over {17}}\)

* Ta có: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\)

Suy ra: 

\(\eqalign{
& {\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - {\left( {{{15} \over {17}}} \right)^2} \cr
& = 1 - {{225} \over {289}} = {{64} \over {289}} \cr} \)

Vì \(\sin \alpha  > 0\) nên \(\sin \alpha  = \sqrt {{{64} \over {289}}}  = {8 \over {17}}\)

* \(tg\alpha {{\sin \alpha } \over {\cos \alpha }} = {{{8 \over {17}}} \over {{{15} \over {17}}}} = {8 \over {17}}.{{17} \over {15}} = {8 \over {15}}\)

c) \(\cos \alpha  = 0,6\)

* Ta có: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1.\)

Suy ra: \({\sin ^2}\alpha  = 1 - {\cos ^2}\alpha \)

\( = 1 - {(0,6)^2} = 1 - 0,36 = 0,64\)

Vì \(\sin \alpha  > 0\) nên \(\sin \alpha  = \sqrt {0,64}  = 0,8\)

* \(tg\alpha  = {{\sin \alpha } \over {\cos \alpha }} = {{0,8} \over {0,6}} = {8 \over 6} = {4 \over 3}\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan