Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 83* trang 171 Sách bài tập (SBT) Toán 9 Tập 1

Bình chọn:
4.2 trên 6 phiếu

Cho hai đường tròn (O) và (O') cắt nhau tại A và B, OO' = 3cm. Qua A kẻ một đường thẳng cắt các đường tròn (O) và (O') theo thứ tự tại E và F ( A nằm giữa E và F). Tính xem đoạn thẳng EF có độ dài lớn nhất bằng bao nhiêu?

Cho hai đường tròn (O) và (O') cắt nhau tại A và B, OO' = 3cm. Qua A kẻ một đường thẳng cắt các đường tròn (O) và (O') theo thứ tự tại E và F ( A nằm giữa E và F). Tính xem đoạn thẳng EF có độ dài lớn nhất bằng bao nhiêu? 

Giải:

Kẻ OI ⊥ AE, O'K ⊥ AF

Trong đường tròn (O), ta có:

   \( IA = IE = {1 \over 2}AE\) ( đường kính vuông góc với dây cung)

Trong đường tròn (O'), ta có:

      \(KA = KF = {1 \over 2}AF\) (đường kính vuông góc với dây cung)

Ta có:  EF = AE = AF

Suy ra: EF = 2IA = 2AK = 2(IA + AK) = 2IK        (1)

Kẻ O'H ⊥ OI

Khi đó tứ giác IHO'K là hình chữ nhật ( có ba góc vuông)

Suy ra: O'H = IK

Trong tam giác OHO' ta có: \(O’H  \le {\rm{OO'}}\) =3 (cm)

Suy ra: \(IK  \le {\rm{OO}}'\)                       (2)

Từ (1) và (2) suy ra: \(EF  \le {\rm{2OO'}}= 6 (cm)\)

Ta có: EF = 6cm khi H và O trùng nhau hay EF // OO'

Vậy EF có độ dài lớn nhất bằng 6cm khi và chỉ khi EF // OO'.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan