Chứng minh rằng:
Nếu \({{\rm{a}}^2} = bc\) (với a ≠ b và a ≠ c) thì \({{a + b} \over {a - b}} = {{c + a} \over {c - a}}\)
Giải
Ta có \({{\rm{a}}^2} = bc \Rightarrow {a \over c} = {b \over a}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\({a \over c} = {b \over a} = {{a + b} \over {c + a}} = {{a - b} \over {c - a}}\) (với a ≠ b và a ≠c)
\( \Rightarrow {{a + b} \over {a - b}} = {{c + a} \over {c - a}}\)
Sachbaitap.com
>> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục