Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Giải bài 1, 2, 3, 4, 5 trang 38, 39 SGK Toán 6 tập 1 Chân trời sáng tạo

Bình chọn:
4.2 trên 57 phiếu

Giải SGK Toán lớp 6 trang 38, 39 tập 1 Chân trời sáng tạo - Bài 12. Ước chung. Ước chung lớn nhất. Bài 4 trang 39: Rút gọn các phân số sau:

Bài 1 trang 38 SGK Toán 6 tập 1 - Chân trời sáng tạo

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai? Với khẳng định sai, hãy sửa lại cho đúng.

a) ƯC(12, 24) = {1; 2; 3; 4; 6; 8; 12};       

b) ƯC(36, 12, 48) = {1; 2; 3; 4; 6; 12}.

Phương pháp:

- Viết tập hợp các ước của a và ước của b: Ư(a), Ư(b).

- Tìm những phần tử chung của Ư(a) và Ư(b).

Lời giải:

a) Khẳng định a là sai vì:

Ư(12) = {1; 2; 3; 4; 6; 12}

Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Suy ra ƯC(12, 24) = {1; 2; 3; 4; 6; 12}

Do đó 8 không phải là phần tử của tập ƯC(12, 24).

b) Khẳng định b là đúng vì:

Ta có:

Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}

Ư(12) = {1; 2; 3; 4; 6; 12}

Ư(48) = {1; 2; 3; 4; 6; 8; 12; 16; 24; 48}

Suy ra ƯC(36, 12, 48) = {1; 2; 3; 4; 6; 12}.

Bài 2 trang 39 SGK Toán 6 tập 1 - Chân trời sáng tạo

Tìm:

a) ƯCLN(1, 16);          b) ƯCLN(8, 20);

c) ƯCLN(84, 156);      c) ƯCLN(16, 40, 176).

Phương pháp:

Muốn tìm ƯCLN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau:

Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

Bước 2: Chọn ra các thừa số nguyên tố chung.

Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó.

Tích đó là ƯCLN phải tìm.

Lời giải:

a) ƯCLN(1,16) = 1.

b) 8 = 23; 20 = 22.5

=> ƯCLN(8, 20) = 22 = 4.

c) 84 = 22. 3.7;  156 = 22.3.13

=> ƯCLN(84, 156) = 22.3 = 12.

d) 16 = 24; 40 = 23.5;  176 = 24.11

=> ƯCLN(16, 40, 176) = 23 = 8.

Bài 3 trang 39 SGK Toán 6 tập 1 - Chân trời sáng tạo

a) Ta có ƯCLN(18, 30) = 6. Hãy viết tập hợp A các ước của 6. Nêu nhận xét về tập hợp ƯC(18, 30) và tập hợp A.

b) Cho hai số a và b. Để tìm tập hợp ƯC(a, b), ta có thể tìm tập hợp các ước của ƯCLN(a, b). Hãy tìm ƯCLN rồi tìm tập hợp các ước chung của:

i. 24 và 30;     ii. 42 và 98;    iii. 180 và 234.

Phương pháp:

a) Tìm tập hợp các ước của 6 rồi nhận xét

b) Tìm tập hợp các ƯCLN sau đó tìm tập hợp các ước của ƯCLN.

Lời giải:

a) Các ước của 6 là 1, 2, 3, 6.

Do đó ta có tập hợp A = Ư(6) = {1; 2; 3; 6}.

Ư(18) = {1; 2; 3; 6; 9; 18}.

Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}.

ƯC(18, 30) = {1; 2; 3; 6}.

 Nhận xét: Ta thấy tập hợp ƯC(18, 30) = {1; 2; 3; 6} nên tập hợp ƯC (18, 30) giống với tập hợp A.

Tổng quát: Cho hai số tự nhiên a và b. Để tìm tập ƯC(a,b) ta sẽ tìm ƯCLN(a, b) = m. Khi đó ƯC(a, b) = Ư(m).

b) 

i.  Phân tích 24 và 30 ra thừa số nguyên tố: 24 = 23.3; 30 = 2.3.5.

Suy ra ƯCLN(24, 30) = 2.3 =6.

Vậy: ƯC(24, 30) = Ư(6) = {1; 2; 3; 6}.

ii. Ta phân tích các số 42 và 98 ra thừa số nguyên tố

42 = 2.3.7; 98 = 2.72

Suy ra ƯCLN(42, 98) = 2.7 = 14.

Vậy: ƯC (42, 98) = Ư(14) = {1; 2; 7; 14}.

iii.Ta phân tích các số 180 và 234 ra thừa số nguyên tố

180 = 22.5.32; 234 = 2.32.13

Suy ra ƯCLN(180, 234) = 2.32 = 18

Vậy: ƯC(180, 234) = Ư(18) = {1; 2; 3; 6; 9; 18}.

Bài 4 trang 39 SGK Toán 6 tập 1 - Chân trời sáng tạo

Rút gọn các phân số sau:

\(\frac{{28}}{{42}};\,\,\frac{{60}}{{135}};\,\,\frac{{288}}{{180}}\).

Phương pháp:

Chia cả tử và mẫu của các phân số cho ƯCLN của chúng.

Lời giải:

Để rút gọn một phân số, ta chia cả tử và mẫu của phân số cho ƯCLN của chúng để được phân số tối giản.

Bài 5 trang 39 SGK Toán 6 tập 1 - Chân trời sáng tạo

Chị Lan có ba đoạn dây ruy băng màu khác nhau với độ dài lần lượt là 140 cm, 168 cm và 210 cm. Chị muốn cắt cả ba đoạn dây đó thành những đoạn ngắn hơn có cùng chiều dài để làm nơ trang trí mà không bị thừa ruy băng. Tính độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra (độ dài mỗi đoạn dây ngắn là một số tự nhiên với đơn vị là xăng-ti-mét). Khi đó, chị Lan có được bao nhiêu đoạn dây ruy băng ngắn?

Phương pháp:

Độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra chính là ước chung lớn nhất của 140, 168 và 210.

Lời giải:

Bởi vì chị Lan muốn cắt cả ba đoạn dây đó thành những đoạn ngắn hơn có cùng chiều dài.

Nên độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra chính là ước chung lớn nhất của 140, 168 và 210.

Ta tìm ước chung lớn nhất của 140, 168, 210:

Ta có: 140 = 22.5.7

          168 = 23.3.7

          210 = 2.3.5.7

Suy ra ƯCLN(140, 168, 210) = 2 . 7 = 14.

Độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra là: 14 cm.

- Mỗi đoạn dây khác nhau có thể cắt được số đoạn dây ngắn là:

Đoạn dây dài 140 cm cắt được: 140 : 14 = 10 (đoạn).

Đoạn dây dài 168 cm cắt được: 168 : 14 = 12 (đoạn).

Đoạn dây dài 210 cm cắt được: 210 : 14 = 15 (đoạn).

- Số đoạn dây ruy băng ngắn chị Lan có được là:

10 + 12 + 15 = 37 (đoạn dây).

Kết luận: Chị Lan có được tổng cộng 37 đoạn dây ruy băng ngắn sau khi cắt với độ dài mỗi đoạn là 14 cm. 

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan