Bài 20 trang 13 SBT Toán 10 - Cánh Diều
Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n. Mỗi tổ hợp chập k của n phần tử đó là:
A. Tất cả kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.
B. Một tập con gồm k phần tử được lấy ra từ n phần tử của A.
C. Một kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.
D. Tất cả tập con gồm k phần tử được lấy ra từ n phần tử của A.
Lời giải:
Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n.
Mỗi tập con gồm k phần tử được lấy ra từ n phần tử của A được gọi là một tổ hợp chập k của n phần tử đó.
-> Chọn B
Bài 21 trang 13 SBT Toán 10 - Cánh Diều
Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?
A. \(C_n^k = \frac{{A_n^k}}{{k!}}\) B. \(C_n^k = C_n^{n - k}\) C. \(C_n^k = \frac{{A_n^k}}{{(n - k)!}}\) D. \(C_n^k = \frac{{n!}}{{k!(n - k)!}}\)
Lời giải:
Cho k, n là các số nguyên dương, k ≤ n.
Ta có \(C_n^k = \frac{{A_n^k}}{{k!}} = \frac{{n!}}{{k!(n - k)!}}\) ® A, D đúng
Theo tính chất của các số \(C_n^k\) , ta có \(C_n^k = C_n^{n - k}\) ® B đúng
Suy ra phương án C sai ® Chọn C
Bài 22 trang 13 SBT Toán 10 - Cánh Diều
Tính số đoạn thẳng có hai đầu mút là 2 trong 10 điểm phân biệt.
Lời giải:
Mỗi đoạn thẳng tương ứng với một cặp điểm (không tính thứ tự) chọn trong 10 điểm phân biệt đã cho.
Mỗi cách chọn 2 trong 10 điểm phân biệt là một tổ hợp chập 2 của 10.
Số cách chọn 2 trong 10 điểm phân biệt là: \(C_{10}^2 = 45\) (cách chọn).
Vậy có 45 đoạn thẳng thỏa mãn yêu cầu bài toán.
Bài 23 trang 13 SBT Toán 10 - Cánh Diều
Cho n điểm phân biệt (n > 1). Biết rằng, số đoạn thẳng có hai đầu mút là 2 trong n điểm đã cho bằng 78. Tìm n.
Lời giải:
Số đoạn thẳng có 2 đầu mút là 2 trong n điểm đã cho là: \(C_n^2 = \frac{{n!}}{{2!(n - 2)!}}\)
Theo đề bài, ta có số đoạn thẳng có hai đầu mút là 2 trong n điểm đã cho bằng 78 nên có PT:
\(\frac{{n!}}{{2!(n - 2)!}} = 78 \Leftrightarrow \frac{{n(n - 1)(n - 2)!}}{{2(n - 2)!}}\)\( = 78 \Leftrightarrow \frac{{n(n - 1)}}{2} = 78\)
\( \Leftrightarrow n(n - 1) = 156 \Leftrightarrow {n^2} - n - 156 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}n = 13\\n = - 12\end{array} \right.\)
Vì n ≥ 2 nên ta nhận n = 13
Vậy n = 13 thỏa mãn yêu cầu bài toán
Bài 24 trang 14 SBT Toán 10 - Cánh Diều
Tính số đường chéo của một đa giác lồi có 12 đỉnh.
Lời giải:
Đa giác lồi có 12 đỉnh thì có 12 cạnh.
Số cách chọn 2 đỉnh trong 12 đỉnh là một tổ hợp chập 2 của 12.
Suy ra số cách chọn 2 đỉnh trong 12 đỉnh là: \(C_{12}^2\) cách chọn
Vậy số đường chéo cần tìm là \(C_{12}^2 - 12 = 54\)
Bài 25 trang 14 SBT Toán 10 - Cánh Diều
Cho đa giác lồi n đỉnh (n > 3). Biết rằng, số đường chéo của đa giác đó là 170. Tìm n.
Lời giải:
Đa giác lồi có n đỉnh thì có n cạnh.
Số cách chọn 2 đỉnh trong n đỉnh là: \(C_{12}^2\) cách chọn
\( \Rightarrow \) Số đường chéo cần tìm là \(C_n^2 - n\)
Theo đề bài, ta có số đường chéo của đa giác là 170
\( \Rightarrow C_n^2 - n = 170 \Leftrightarrow \frac{{n!}}{{2!(n - 2)!}} - n = 170\)\( \Leftrightarrow \frac{{n(n - 1)(n - 2)!}}{{2(n - 2)!}} - n = 170 \Leftrightarrow \frac{{n(n - 1)}}{2} - n = 170\)
\( \Leftrightarrow n(n - 1) - 2n = 340 \Leftrightarrow {n^2} - 3n - 340 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}n = 20\\n = - 17\end{array} \right.\)
Vì n > 3 nên ta nhận n = 20
Vậy n = 20 thỏa mãn yêu cầu bài toán
Bài 26 trang 14 SBT Toán 10 - Cánh Diều
Bạn Nam đến cửa hàng mua 2 chiếc ghế loại A. Tại cửa hàng, ghế loại A màu xanh có 20 chiếc và ghế loại A màu đỏ có 15 chiếc. Hỏi bạn Nam có bao nhiêu cách chọn mua 2 chiếc ghế loại A?
Lời giải:
Cửa hàng đó có tất cả 20 + 15 = 35 (chiếc ghế).
Mỗi cách chọn 2 chiếc ghế trong tổng số 35 chiếc là một tổ hợp chập 2 của 35.
Vậy số cách chọn 2 chiếc ghế loại A trong tổng số 35 chiếc ghế là: \(C_{35}^2 = 595\)
Bài 27 trang 14 SBT Toán 10 - Cánh Diều
Chứng minh rằng:
a) \(kC_n^k = nC_{n - 1}^{k - 1}\) với \(1 \le k \le n\)
b) \(\frac{1}{{k + 1}}C_n^k = \frac{1}{{n + 1}}C_{n + 1}^{k + 1}\) với \(0 \le k \le n\)
Lời giải:
a) Với \(1 \le k \le n\), biến đổi vế phải ta có:
VP = \(nC_{n - 1}^{k - 1} = \frac{{n(n - 1)!}}{{(k - 1)!\left[ {(n - 1) - (k - 1)} \right]!}}\)\( = \frac{{n!}}{{(k - 1)!(n - k)!}} = \frac{{n!}}{{\frac{{k!}}{k}(n - k)!}}\)\( = k\frac{{n!}}{{k!(n - k)!}}\) \( = kC_n^k\) = VT (ĐPCM)
b) Với \(0 \le k \le n\), biến đổi vế phải ta có:
VP = \(\frac{1}{{n + 1}}C_{n + 1}^{k + 1} = \frac{1}{{n + 1}}\frac{{(n + 1)!}}{{(k + 1)!\left[ {(n + 1) - (k + 1)} \right]!}}\)\( = \frac{{(n + 1).n!}}{{(n + 1)(k + 1)!(n - k)!}} = \frac{{n!}}{{(k + 1)!(n - k)!}}\)
\( = \frac{{n!}}{{(k + 1)k!(n - k)!}} = \frac{1}{{k + 1}}\frac{{n!}}{{k!(n - k)!}}\) \( = \frac{1}{{k + 1}}C_n^k\) = VT (ĐPCM)
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục