Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.2 trang 99 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
2.4 trên 5 phiếu

Chứng minh các đẳng thức sau (với n ∈ N* )

Chứng minh các đẳng thức sau (với n ∈ N* )

a) \({1^2} + {3^2} + {5^2} + ... + {\left( {2n - 1} \right)^2} = {{n\left( {4{n^2} - 1} \right)} \over 3};\)   

b) \({1^3} + {2^3} + {3^3} + ... + {n^3} = {{{n^2}{{\left( {n + 1} \right)}^2}} \over 4}\)    

Giải:

a)      Đặt vế trái bằng Sn

Với n = 1 vế trái chỉ có một số hạng bằng 1, vế phải bằng \({{1\left( {4.1 - 1} \right)} \over 3} = 1\)

Giả sử đã có \({S_k} = {{k\left( {4{k^2} - 1} \right)} \over 3}\) với \(k \ge 1\). Ta phải chứng minh

\({S_{k + 1}} = {{\left( {k + 1} \right)\left[ {4{{\left( {k + 1} \right)}^2} - 1} \right]} \over 3}\)

            Thật vậy, ta có

\(\eqalign{
& {S_{k + 1}} = {S_k} + {\left[ {2\left( {k + 1} \right) - 1} \right]^2} = {S_k} + {\left( {2k + 1} \right)^2} \cr
& {\rm{ = }}{{k\left( {4{k^2} - 1} \right)} \over 3} + {\left( {2k + 1} \right)^2} \cr
& = {{\left( {2k + 1} \right)\left[ {k\left( {2k - 1} \right) + 3\left( {2k + 1} \right)} \right]} \over 3} \cr
& {\rm{ = }}{{\left( {k + 1} \right)\left( {2{k^2} + 5k + 3} \right)} \over 3} \cr
& = {{\left( {k + 1} \right)\left( {2k + 3} \right)\left( {2k + 1} \right)} \over 3} \cr
& = {{\left( {k + 1} \right)\left[ {4{{\left( {k + 1} \right)}^2} - 1} \right]} \over 3} \cr} \)

b)      Đặt vế trái bằng An

Dễ thấy với n = 1 hệ thức đúng.

Giả sử đã có \({A_k} = {{{k^2}{{\left( {k + 1} \right)}^2}} \over 4},\left( {k \ge 1} \right)\)

Ta có: 

\(\eqalign{
& {A_{k + 1}} = {A_k} + {\left( {k + 1} \right)^3} \cr
& = {{{k^2}{{\left( {k + 1} \right)}^2}} \over 4} + {\left( {k + 1} \right)^3} \cr
& {\rm{ = }}{{{{\left( {k + 1} \right)}^2}\left( {{k^2} + 4k + 4} \right)} \over 4} \cr
& = {{{{\left( {k + 1} \right)}^2}{{\left( {k + 2} \right)}^2}} \over 4} \cr} \)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan