Trong mặt phẳng Oxy, cho vectơ \(\overrightarrow v = \left( {3;1} \right)\) và đường thẳng d có phương trình \(2x - y = 0\). Tìm ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc 90° và phép tịnh tiến theo vectơ \(\overrightarrow v \).
Giải:
Gọi \(d_1\) là ảnh của d qua phép quay tâm 0 góc 90°. Vì d chứa tâm quay O nên \(d_1\) cũng chứa O. Ngoài ra \(d_1\) vuông góc với d nên \(d_1\) có phương trình \(9x + 2y = 0\).
Gọi d' là ảnh của \(d_1\) qua phép tịnh tiến vectơ \(\overrightarrow v \). Khi đó phương trình của d' có dạng \(x + 2y + C = 0\). Vì d' chứa \(O'\left( {3;1} \right)\) là ảnh của O qua phép tịnh tiến vectơ \(\overrightarrow v \) nên \(3 + 2 + C = 0\) từ đó C = -5. Vậy phương trình của d' là \(x + 2y - 5 = 0\).
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục