Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.5 trang 23 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
3.8 trên 4 phiếu

Tìm những giá trị của x để giá trị của các hàm số tương ứng sau bằng nhau

Tìm những giá trị của x để giá trị của các hàm số tương ứng sau bằng nhau

a) \(y = \cos \left( {2x - {\pi  \over 3}} \right)$ và $y = \cos \left( {{\pi  \over 4} - x} \right)\)

b) \(y = \sin \left( {3x - {\pi  \over 4}} \right)$ và $y = \sin \left( {x + {\pi  \over 6}} \right)\)

c) \(y = \tan \left( {2x + {\pi  \over 5}} \right)$ và $y = \tan \left( {{\pi  \over 5} - x} \right)\)     

d) \(y = \cot 3x\) và \(y = \cot \left( {x + {\pi  \over 3}} \right)\)  

Giải:

a)

\(\eqalign{
& \cos \left( {2x - {\pi \over 3}} \right) = \cos \left( {{\pi \over 4} - x} \right) \cr
& \Leftrightarrow \left[ \matrix{
2x - {\pi \over 3} = {\pi \over 4} - x + k2\pi ,k \in Z \hfill \cr
2x - {\pi \over 3} = - {\pi \over 4} + x + k2\pi ,k \in Z \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
3x = {{7\pi } \over {12}} + k2\pi ,k \in Z \hfill \cr
x = {\pi \over {12}} + k2\pi ,k \in Z \hfill \cr} \right. \cr} \)

Vậy các giá trị cần tìm là: \(x = {{7\pi } \over {36}} + k{{2\pi } \over 3},k \in Z\) và \(x = {\pi  \over {12}} + k2\pi ,k \in Z\)

b)

\(\eqalign{
& \sin \left( {3x - {\pi \over 4}} \right) = \sin \left( {x + {\pi \over 6}} \right) \cr
& \Leftrightarrow \left[ \matrix{
3x - {\pi \over 4} = x + {\pi \over 6} + k2\pi ,k \in Z \hfill \cr
3x - {\pi \over 4} = \pi - x - {\pi \over 6} + k2\pi ,k \in Z \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
2x = {{5\pi } \over {12}} + k2\pi ,k \in Z \hfill \cr
4x = {{13\pi } \over {12}} + k2\pi ,k \in Z \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = {{5\pi } \over {24}} + k\pi ,k \in Z \hfill \cr
x = {{13\pi } \over {48}} + k{\pi \over 2},k \in Z \hfill \cr} \right. \cr} \)

Vậy các giá trị cần tìm là: \(x = {{5\pi } \over {24}} + k\pi ,k \in Z\) và \(x = {{13\pi } \over {48}} + k{\pi  \over 2},k \in Z\)

c)

\(\eqalign{
& \tan \left( {2x + {\pi \over 3}} \right) = \tan \left( {{\pi \over 5} - x} \right) \cr
& \Leftrightarrow \left\{ \matrix{
\cos \left( {2x + {\pi \over 5}} \right) \ne 0;\,\,\cos \left( {{\pi \over 5} - x} \right) \ne 0\left( 1 \right) \hfill \cr
2x + {\pi \over 5} = {\pi \over 5} - x + k\pi ,k \in Z\left( 2 \right) \hfill \cr} \right. \cr
& \left( 2 \right) \Leftrightarrow x = {{k\pi } \over 3},k \in Z \cr} \)

Các giá trị này thỏa mãn điều kiện (1). Vậy ta có: \(x = {{k\pi } \over 3},k \in Z\)

d) 

\(\eqalign{
& \cot 3x = \cot \left( {x + {\pi \over 3}} \right) \cr
& \Leftrightarrow \left\{ \matrix{
\sin 3x \ne 0;\,\,\sin \left( {x + {\pi \over 3}} \right) \ne 0\,\,\,\,\,\left( 3 \right) \hfill \cr
3x = x + {\pi \over 3} + k\pi ,k \in Z\,\,\,\,\left( 4 \right) \hfill \cr} \right. \cr
& \left( 4 \right) \Leftrightarrow x = {\pi \over 6} + {{k\pi } \over 2},k \in Z \cr} \)

Nếu k = 2m + 1, m ∈ Z thì các giá trị này không thỏa mãn điều kiện (3).

Suy ra các giá trị cần tìm là \(x = {\pi  \over 6} + m\pi ,m \in Z\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan