Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.3 trang 36 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
2.7 trên 6 phiếu

Giải các phương trình sau

Giải các phương trình sau

a) \(3{\cos ^2}x - 2\sin x + 2 = 0\)

b) \(5{\sin ^2}x + 3\cos x + 3 = 0\)

c) \({\sin ^6}x + {\cos ^6}x = 4{\cos ^2}2x\)

d) \( - {1 \over 4} + {\sin ^2}x = {\cos ^4}x\)

Giải: 

a)

\(\eqalign{
& 3{\cos ^2}x - 2\sin x + 2 = 0 \cr
& \Leftrightarrow 3\left( {1 - {{\sin }^2}x} \right) - 2\sin x + 2 = 0 \cr
& \Leftrightarrow 3{\sin ^2}x + 2\sin x - 5 = 0 \cr
& \Leftrightarrow \left( {\sin x - 1} \right)\left( {3\sin x + 5} \right) = 0 \cr
& \Leftrightarrow \sin x = 1 \cr
& \Leftrightarrow x = {\pi \over 2} + k2\pi ,k \in {\rm Z} \cr} \)

b) 

\(\eqalign{
& 5{\sin ^2}x + 3\cos x + 3 = 0 \cr
& \Leftrightarrow 5\left( {1 - {{\cos }^2}x} \right) + 3\cos x + 3 = 0 \cr
& \Leftrightarrow 5{\cos ^2}x - 3\cos x - 8 = 0 \cr
& \Leftrightarrow \left( {\cos x + 1} \right)\left( {5\cos x - 8} \right) = 0 \cr
& \Leftrightarrow \cos x = - 1 \cr
& \Leftrightarrow x = \left( {2k + 1} \right)\pi ,k \in {\rm Z} \cr} \)

c)

\(\eqalign{
& {\sin ^6}x + {\cos ^6}x = 4{\cos ^2}2x \cr
& \Leftrightarrow {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} - 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right) = 4{\cos ^2}2x \cr
& \Leftrightarrow 1 - {3 \over 4}{\sin ^2}2x = 4{\cos ^2}2x \cr
& \Leftrightarrow 1 - {3 \over 4}\left( {1 - {{\cos }^2}2x} \right) = 4{\cos ^2}2x \cr
& \Leftrightarrow {{13} \over 4}{\cos ^2}2x = {1 \over 4} \cr
& \Leftrightarrow 13\left( {{{1 + \cos 4x} \over 2}} \right) = 1 \cr
& \Leftrightarrow 1 + \cos 4x = {2 \over {13}} \cr
& \Leftrightarrow \cos 4x = - {{11} \over {13}} \cr
& \Leftrightarrow 4x = \pm \arccos \left( { - {{11} \over {13}}} \right) + k2\pi ,k \in {\rm Z} \cr
& \Leftrightarrow x = \pm {1 \over 4}\arccos \left( { - {{11} \over {13}}} \right) + k{\pi \over 2},k \in {\rm Z} \cr} \)

d) 

\(\eqalign{
& - {1 \over 4} + {\sin ^2}x = {\cos ^4}x \cr
& \Leftrightarrow - {1 \over 4} + {{1 - \cos 2x} \over 2} = {\left( {{{1 + \cos 2x} \over 2}} \right)^2} \cr
& \Leftrightarrow - 1 + 2 - 2\cos 2x = 1 + 2\cos 2x + {\cos ^2}2x \cr
& \Leftrightarrow {\cos ^2}2x + 4\cos 2x = 0 \cr
& \Leftrightarrow \left[ \matrix{
\cos 2x = 0 \hfill \cr
\cos 2x = - 4\left( {Vô\,\,nghiệm} \right){\rm{ }} \hfill \cr} \right. \cr
& \Leftrightarrow 2x = {\pi \over 2} + k\pi ,k \in {\rm Z} \cr
& \Leftrightarrow x = {\pi \over 4} + k{\pi \over 2},k \in {\rm Z} \cr} \)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan