Cho hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) cắt nhau theo giao tuyến d. Trong \(\left( \alpha \right)\) lấy hai điểm A và B sao cho AB cắt d tại I. O là một điểm nằm ngoài \(\left( \alpha \right)\) và \(\left( \beta \right)\) sao cho OA và OB lần lượt cắt \(\left( \beta \right)\) tại A’ và B’.
a) Chứng minh ba điểm I, A’, B’ thẳng hàng.
b) Trong \(\left( \alpha \right)\) lấy điểm C sao cho A, B, C không thẳng hàng. Giả sử OC cắt \(\left( \beta \right)\) tại C’, BC cắt B’C’ tại J, CA cắt C’A’ tại K. Chứng minh I, J, K thẳng hàng.
Giải:
(h.2.27)
a) I, A’, B’ là ba điểm chung của hai mặt phẳng (OAB) và \(\left( \beta \right)\) nên chúng thẳng hàng.
b) I, J, K là ba điểm chung của hai mặt phẳng (ABC) và (A’B’C’) nên chúng thẳng hàng.
Sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục