Chứng minh rằng: \(\mathop {\lim }\limits_{x \to + \infty } \int\limits_0^1 {{x^n}\sin \pi xdx = 0} \).
Hướng dẫn làm bài
Với \(x \in {\rm{[}}0;1]\) , ta có \(0 \le {x^n}\sin \pi x \le {x^n}\) . Do đó:
\(0 \le \int\limits_0^1 {{x^n}\sin \pi xdx} \le \int\limits_0^1 {{x^n}dx = {1 \over {n + 1}}} \)
Áp dụng quy tắc chuyển qua giới hạn trong bất đẳng thức, ta được điều phải chứng minh.
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục