Chứng minh rằng hàm số f(x) cho bởi \(f(x) = \int\limits_0^x {{t \over {\sqrt {1 + {t^4}} }}} dt,x \in R\) là hàm số chẵn.
Hướng dẫn làm bài
Đặt t = - s trong tích phân: \(f( - x) = \int\limits_0^{ - x} {{t \over {\sqrt {1 + {t^4}} }}} dt\) , ta được:\(f( - x) = \int\limits_0^{ - x} {{t \over {\sqrt {1 + {t^4}} }}} dt = \int\limits_0^x {{s \over {\sqrt {1 + {s^4}} }}} ds = f(x)\)
Sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục