Bài 3.3 trang 171 sách bài tập (SBT) - Giải tích 12

Bình chọn:
3.4 trên 5 phiếu

Tìm nguyên hàm của các hàm số sau:

Tìm nguyên hàm của các hàm số sau:

a) \(f(x) = {(x - 9)^4}\)                             

 b) \(f(x) = {1 \over {{{(2 - x)}^2}}}\)

c) \(f(x) = {x \over {\sqrt {1 - {x^2}} }}\)                               

d) \(f(x) = {1 \over {\sqrt {2x + 1} }}\)

e) \(f(x) = {{1 - \cos 2x} \over {{{\cos }^2}x}}\)                                                 

g) \(f(x) = {{2x + 1} \over {{x^2} + x + 1}}\)

Hướng dẫn làm bài

a) \(F(x) = {{{{(x - 9)}^5}} \over 5} + C\)                                             

 b) \(F(x) = {1 \over {2 - x}} + C\)

c) \(F(x) =  - \sqrt {1 - {x^2}}  + C\)                                             

d) \(F(x) = \sqrt {2x + 1}  + C\)

e) \(F(x) = 2(\tan x - x) + C\)  .

HD: Vì \(f(x) = 2{{{{\sin }^2}x} \over {{{\cos }^2}x}} = 2({1 \over {{{\cos }^2}x}} - 1)\)

g) \(F(x) = \ln ({x^2} + x + 1) + C\). HD:  Đặt u = x2 + x + 1 , ta có u’ = 2x + 1  

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Bài viết liên quan