Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 5.4 trang 76 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
3.5 trên 4 phiếu

Kết quả (b,c)của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó b là số chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai

Kết quả (b,c)của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó b là số chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai  \({x^2} + bx + c = 0\)

Tính xác suất để

a)      Phương trình vô nghiệm;

b)      Phương trình có nghiệm kép;

c)      Phương trình có nghiệm.

Giải:

Không gian mẫu \(\Omega  = \left\{ {\left( {b,c} \right):1 \le b,c \le 6} \right\}\). Kí hiệu A, B, C là các biến cố cần tìm xác suấtứng với các câu a), b), c). Ta có \(\Delta  = {b^2} - 4c\)

a)

\(\eqalign{
& A = \left\{ {\left( {b,c} \right) \in \Omega |{b^2} - 4c < 0} \right\} \cr
& {\rm{ }} = \left\{ \matrix{
\left( {1,1} \right),\left( {1,2} \right),...,\left( {1,6} \right),\left( {2,2} \right),...,\left( {2,6} \right), \hfill \cr
\left( {3,3} \right),\left( {3,4} \right),\left( {3,5} \right),\left( {3,6} \right),\left( {4,5} \right),\left( {4,6} \right) \hfill \cr} \right\}. \cr
& n\left( A \right) = 6 + 5 + 4 + 2 = 17,{\rm{ P}}\left( A \right) = {{17} \over {36}}. \cr} \)     

b) 

\(\eqalign{
& B = \left\{ {\left( {b,c} \right) \in \Omega |{b^2} - 4c = 0} \right\} \cr
& {\rm{ }} = \left\{ {\left( {2,1} \right),\left( {4,4} \right)} \right\}. \cr} \)

Từ đó \(P\left( B \right) = {2 \over {36}} = {1 \over {18}}\)

c) 

\(C = \overline A \). Vậy \(P\left( C \right) = 1 - {{17} \over {36}} = {{19} \over {36}}\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan