Cho tam giác \(ABC\), với mỗi số \(k\) ta xác định các điểm \(A’, B’\), sao cho \(\overrightarrow {AA'} = k\overrightarrow {BC} \,;\,\,\overrightarrow {BB'} = k\overrightarrow {CA} \). Tìm quỹ tích trọng tâm \(G’\) của tam giác \(A’B’C\).
Giải
Gọi \(G\) là trọng tâm tam giác \(ABC\), ta có
\(3\overrightarrow {GG'} = \overrightarrow {AA'} + \overrightarrow {BB'} + \overrightarrow {CC} \\ = k\overrightarrow {BC} + k\overrightarrow {CA} + \overrightarrow 0 \\ = k(\overrightarrow {BC} + \overrightarrow {CA} ) = k\overrightarrow {BA} .\)
Từ đó suy ra quỹ tích các điểm \(G’\) là đường thẳng đi qua \(G\) và song song với đường thẳng \(AB\).
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục