Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 60 trang 110 SBT Hình học 10 Nâng cao

Bình chọn:
4.2 trên 6 phiếu

Giải bài tập Bài 60 trang 110 SBT Hình học 10 Nâng cao

Xác định tâm đối xứng, độ dài hai trục, tiêu cự, tâm sai, tọa độ các tiêu điểm và các đỉnh của mỗi elip sau:

a)\( \dfrac{{{x^2}}}{{25}} +  \dfrac{{{y^2}}}{{16}} = 1 ;\)

b) \({x^2} + 4{y^2} = 1 ;\)

c) \(4{x^2} + 5{y^2} = 20 ;\)

d) \(4{x^2} + 16{y^2} - 1 = 0\)

e) \({x^2} + 3{y^2} = 2 ;\)

f) \(m{x^2} + n{y^2} = 1 (n > m > 0,m \ne n).\)

Vẽ elip có phương trình ở câu a).

Giải

a) \(O\) là tâm đối xứng, \({a^2} = 25   \Rightarrow   a = 5  ; \) \(  {b^2} = 16  \Rightarrow   b = 4 ;\) \(   {c^2} = {a^2} - {b^2} = 9   \Rightarrow   c = 3\).

Tâm sai \(e =  \dfrac{c}{a} =  \dfrac{3}{5}\).

Độ dài trục lớn : \(2a=10\), độ dài trục bé: \(2b=8\). Tiêu cự : \(2c=6\).

Các tiêu điểm : \({F_1}( - 3 ; 0) ,  {F_2}(3 ; 0)\). Các đỉnh: \(( \pm 5 ; 0) ,  (0 ;  \pm 4)\).

Elip được vẽ như hình 110.

b) Viết lại phương trình của elip: \( \dfrac{{{x^2}}}{1} =  \dfrac{{{y^2}}}{{ \dfrac{1}{4}}} = 1\). Elip có tâm đối xứng \(O\).

\({a^2} = 1   \Rightarrow   a = 1 ;\) \(  {b^2} =  \dfrac{1}{4}   \Rightarrow   b =  \dfrac{1}{2}  ;\) \(  {c^2} = {a^2} - {b^2} =  \dfrac{3}{4}   \Rightarrow   c =  \dfrac{{\sqrt 3 }}{2}\), tâm sai \(e =  \dfrac{{\sqrt 3 }}{2}\).

Độ dài trục lớn : \(2a=2,\) độ dài trục bé : \(2b=1,\) tiêu cự : \(2c=\sqrt 3 \).

Các tiêu điểm: \({F_1}\left( { -  \dfrac{{\sqrt 3 }}{2} ; 0} \right), {F_2}\left( { \dfrac{{\sqrt 3 }}{2} ; 0} \right)\). Các đỉnh : \(( \pm 1 ; 0) ,  \left( {0  ;  \pm  \dfrac{1}{2}} \right)\).

Các câu c), d), e), f) làm tương tự.

 

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan