Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 70 trang 49 SBT Hình học 10 Nâng cao

Bình chọn:
4 trên 3 phiếu

Giải bài tập Bài 70 trang 49 SBT Hình học 10 Nâng cao

Cho tam giác \(ABC\) có trọng tâm \(G\). Gọi \(A’, B’, C’\) lần lượt là hình chiếu của \(G\) trên các cạnh \(BC, CA, AB\) của tam giác. Hãy tính diện tích của tam giác \(A’B’C’\) biết rằng tam giác \(ABC\) có diện tích bằng \(S\) và khoảng cách từ \(G\) đến tâm đường tròn ngoại tiếp tam giác đó bằng \(d\), bán kính đường tròn ngoại tiếp bằng \(R.\)

Giải

(h.63).

 

\({S_{A'B'C'}} = {S_{GA'B'}} + {S_{GB'C'}} + {S_{GC'A'}}  ;\)

\(  {S_{GA'B'}} = \dfrac{1}{2}.GA'.GB'.\sin ({180^0} - \widehat C)\)

\(= \dfrac{1}{{18}}{h_a}{h_b}\sin C\).

Trong tam giác ABC, \({h_a} = \dfrac{{2S}}{a} ,  {h_b} = \dfrac{{2S}}{b} ,  \sin C = \dfrac{c}{{2R}}\)

Từ đó ta có \({S_{GA'B'}} = \dfrac{{{S^2}.c}}{{9ab.R}} = \dfrac{{{S^2}.{c^2}}}{{9abc.R}}\).

Tương tự, \({S_{GB'C'}} = \dfrac{{{S^2}{a^2}}}{{9abc.R}} ;  {S_{GC'A'}} = \dfrac{{{S^2}{b^2}}}{{9abc.R}}\).

Suy ra \({S_{A'B'C'}} = \dfrac{{{S^2}}}{{9abc.R}}({a^2} + {b^2} + {c^2}).\)

Ta lại có \(S = \dfrac{{abc}}{{4R}}\) và \({a^2} + {b^2} + {c^2} = 9({R^2} - {d^2})\) ( theo bài 64) nên \({S_{A'B'C'}} = \dfrac{{{R^2} - {d^2}}}{{4{R^2}}}.S\).

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan