Loigiaihay.com 2024

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 88 trang 51 SBT Hình học 10 Nâng cao

Bình chọn:
4 trên 5 phiếu

Giải bài tập Bài 88 trang 51 SBT Hình học 10 Nâng cao

Cho điểm \(D\) nằm trong tam giác \(ABC\) sao cho \(\widehat {DAB} = \widehat {DBC} = \widehat {DCA} = \varphi .\) Chứng minh rằng:

a) \({\sin ^3}\varphi  = \sin (A - \varphi )\)\(.\sin (B - \varphi ).\sin (C - \varphi ).\)

b) \(\cot \varphi  = \cot A + \cot B + \cot C.\)

Giải

(h.75).

 

a) Theo định lí sin, trong tam giác \(ABD\) ta có

\(\dfrac{{DB}}{{\sin \varphi }} = \dfrac{{AD}}{{\sin (B - \varphi )}}\) ,     (1)

trong tam giác BCD có

\(\dfrac{{CD}}{{\sin \varphi }} = \dfrac{{BD}}{{\sin (C - \varphi )}}\),      (2)

trong tam giác \(ACD\) có

\(\dfrac{{AD}}{{\sin \varphi }} = \dfrac{{CD}}{{\sin (A - \varphi )}}\).

Từ đó ta có

\(\dfrac{{AD.BD.CD}}{{{{\sin }^3}\varphi }}\)

\(= \dfrac{{AD.BD.CD}}{{\sin (A - \varphi )\sin (B - \varphi )\sin (C - \varphi )}}\).

Suy ra đẳng thức cần chứng minh.

b) Áp dụng định lí cosin vào tam giác \(DAB\) ta có

\(B{D^2}\)\( = A{B^2} + A{D^2} - 2.AB.AD.\cos \varphi. \)

Mặt khác, \(\dfrac{1}{2}AB.AD.\sin \varphi  = {S_{ABD}}\) .

Từ đó suy ra \(B{D^2} = A{B^2} + A{D^2} - 4{S_{ABD}}.\cot \varphi \).

Tương tự ta cũng có \(C{D^2} = B{C^2} + B{D^2} - 4{S_{DBC}}.\cot \varphi  ;\) \(  A{D^2} = A{C^2} + C{D^2} - 4{S_{DCA}}.\cot \varphi. \)

Cộng theo vế rồi biến đổi, chú ý rằng tổng diện tích ba tam giác nhỏ bằng diện tích \(S\) của tam giác \(ABC\), ta được

\(\cot \varphi  = \dfrac{{{a^2} + {b^2} + {c^2}}}{{4S}}\) \( = \dfrac{{{a^2} + {b^2} + {c^2}}}{{abc}}R.\)

Theo bài 58 chương II, \(\cot A + \cot B + \cot C\) \( = \dfrac{{{a^2} + {b^2} + {c^2}}}{{abc}}R.\)

Từ đó suy ra đẳng thức cần chứng minh.

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan