Xem thêm: Ôn tập Chương III - Dãy số. Cấp số cộng và cấp số nhân
Cho cấp số nhân \(\left( {{u_n}} \right)\) có công bội là q và các số hạng là chẵn. Gọi \({S_c}\) là tổng các số hạng có chỉ số chẵn và \({S_l}\) là tổng các số hạng có chỉ số lẻ. Chứng minh rằng : \(q = {{{S_c}} \over {{S_l}}}\)
Giải:
Gọi số hạng thứ nhất của cấp số nhân là \({u_1}\) và công bội là q.
Ta có
\(\eqalign{
& {S_1} = {u_1} + {u_1}{q^2} + {u_1}{q^4} + ...\,\,\,\,\,\,\,\left( 1 \right) \cr
& {S_c} = {u_1}q + {u_1}{q^3} + {u_1}{q^5} + ...\,\,\,\,\,\left( 2 \right) \cr} \)
Nhân hai vế của (1) với q ta có
\(q{S_1} = {u_1}q + {u_1}{q^3} + {u_1}{q^5} + ... = {S_c}\)
Vậy \(q = {{{S_c}} \over {{S_1}}}\)
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục