Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 92 trang 119 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 92 trang 119 SBT Hình học 10 Nâng cao

Qua một điểm \(A\) cố định trên trục đối xứng của parabol \((P)\), ta vẽ một đường thẳng cắt \((P)\) tại hai điểm \(M\) và \(N\). Chứng minh rằng tích các khoảng cách từ \(M\) và \(N\) tới trục đối xứng của \((P)\) là hằng số.

Giải

(h.124).

 

Chọn hệ trục tọa độ \(Oxy\) thích hợp sao cho parabol \((P)\) có phương trình : \({y^2} = 2px   (p > 0)\) và \(A(a ; 0)\). Đường thẳng \(\Delta \) đi qua \(A\) có phương trình : \(\alpha (x - a) + \beta y = 0    ({\alpha ^2} + {\beta ^2} \ne 0)\).

Khi đó tung độ các giao điểm của đường thẳng \(\Delta \) và (P) là nghiệm của phương trình:

\(\begin{array}{l}\alpha . \dfrac{{{y^2}}}{{2p}} + \beta y - \alpha a = 0\\ \Leftrightarrow  \alpha {y^2} + 2p\beta y - 2p\alpha a = 0\,\,\,\,\,\,\,\,\,\,(1)\end{array}\)

Rõ ràng \(\alpha  \ne 0\), vì nếu \(\alpha  = 0\) thì đường thẳng \(\Delta \) trùng với trục hoành và chỉ cắt \((P)\) tại một điểm.

Do đó \(|{y_M}|.|{y_N}| = |{y_M}.{y_N}|\)

\(= \left| { -  \dfrac{{2p\alpha a}}{\alpha }} \right| = 2p|a|\).

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan