a) Chứng minh rằng hàm số \(y = \tan x\) đồng biến trên mọi khoảng \(\left( {a,b} \right)\) nằm trong tập xác định \({D_1}\) của nó.
b) Có phải trên bất kì khoảng nào hàm số \(y = \tan x\) đồng biến thì hàm số \(y = \cot x\) nghịch biến ?
Giải
a) Vì \(\left( {a;b} \right) \subset {D_1}\) nên không có số \({\pi \over 2} + k\pi ,k \in Z\) thuộc \(\left( {a,b} \right).\) Vậy có số nguyên \(l\) để \(\left( {a,b} \right) \subset \left( {{\pi \over 2} + l\pi ;{\pi \over 2} + \left( {l + 1} \right)\pi } \right);\) hàm số \(y = \tan x\) đồng biến trên khoảng này nên nó đồng biến trên khoảng \(\left( {a,b} \right).\)
b) Hàm số \(y = \tan x\) đồng biến trên khoảng \(\left( { - {\pi \over 2};{\pi \over 2}} \right),\) nhưng khoảng này không nằm trong tập xác định \({D_2}\) của hàm số \(y = \cot x\) trên khoảng đó. (Nếu cả hai hàm số \(y = \tan x\) và \(y = \cot x\) cùng xác định trên khoảng J dễ thấy \(y = \tan x\) đồng biến trên J và hàm số \(y = \cot x\) nghịch biến trên J).
sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục