Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 12 trang 115 Sách bài tập Hình học 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 12 trang 115 Sách bài tập Hình học 11 Nâng cao

Cho hai đường thẳng ∆, ∆1 cắt ba mặt phẳng song song (α), (β), (γ) lần lượt tại A, B, C và A1, B1, C1. Với điểm O bất kì trong không gian, đặt \(\overrightarrow {OI}  = \overrightarrow {A{A_1}} ,\overrightarrow {OJ}  = \overrightarrow {B{B_1}} ,\overrightarrow {OK}  = \overrightarrow {C{C_1}} \) . Chứng minh rằng ba điểm I, J, K thẳng hàng.

Trả lời

Theo giả thiết, ta có:

\(\overrightarrow {OI}  = \overrightarrow {A{A_1}} ,\overrightarrow {OJ}  = \overrightarrow {B{B_1}} ,\overrightarrow {OK}  = \overrightarrow {C{C_1}} \) .

Do (α), (β), (γ) song song với  nhau, hai đường thẳng ∆, ∆1 cắt chúng lần lượt tại A, B, C và A1, B1, C1 nên theo định lí Ta-lét, ta có:

\(\overrightarrow {BA}  = k\overrightarrow {BC} \)  và \(\overrightarrow {{B_1}{A_1}}  = k\overrightarrow {{B_1}{C_1}} \)

Từ \(\overrightarrow {BA}  = k\overrightarrow {BC} \)  nên với điểm O, ta có:

\(\overrightarrow {OB}  = {{\overrightarrow {OA}  - k\overrightarrow {OC} } \over {1 - k}}\)

Tương tự, ta cũng có:

\(\overrightarrow {O{B_1}}  = {{\overrightarrow {O{A_1}}  - k\overrightarrow {O{C_1}} } \over {1 - k}}\)

Từ đó: \(\overrightarrow {B{B_1}}  = \overrightarrow {O{B_1}}  - \overrightarrow {OB}  = {{\overrightarrow {A{A_1}} } \over {1 - k}} - {k \over {1 - k}}\overrightarrow {C{C_1}} \)

hay \(\overrightarrow {OJ}  = {1 \over {1 - k}}\overrightarrow {OI}  - {k \over {1 - k}}\overrightarrow {OK} \)

Lấy O trùng với I, ta có \(\overrightarrow {IJ}  =  - {k \over {1 - k}}\overrightarrow {IK} \)

Như vậy ba điểm I, J, K thẳng hàng.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan