Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 1.29 trang 12 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Một cách trình bày việc đưa biểu thức

Một cách trình bày việc đưa biểu thức \(a\sin x + b\cos x\) (a, b là hằng số, \({a^2} + {b^2} \ne 0\)) về dạng \(C\sin \left( {x + \alpha } \right)\) nhờ biểu thức toạn độ của tích vô hướng của hai vectơ

Trong mặt phẳng tọa độ gắn với đường tròn lượng giác tâm O gốc A, hãy xét các điểm \(P\left( {a;b} \right),Q\left( {b;a} \right),M\left( {\cos x;\sin x} \right)\)

a) Từ công thức \(\overrightarrow {OQ} .\overrightarrow {OM}  = a\sin x + b\cos x\) và

                          \(\overrightarrow {OQ} .\overrightarrow {OM}  = \left| {\overrightarrow {OQ} } \right|.\left| {\overrightarrow {OM} } \right|\cos \left( {OQ,QM} \right)\)

Hãy suy ra \(a\sin x + b\cos x = C\cos \left( {x - \beta  } \right)\) trong đó \(\beta \) là số đo của góc lượng giác \(\left( {OA,OQ} \right)\)

b) Từ câu a) suy ra rằng  \(a\sin x + b\cos x = C\sin \left( {x + \alpha } \right)\) trong đó \(\alpha \) là số đo của góc lượng giác \(\left( {OA,OP} \right),C = \left| {\overrightarrow {OP} } \right|\)

Giải

a) Ta có \(\overrightarrow {OQ} .\overrightarrow {OM}  = a\sin x + b\cos x\)

\(\eqalign{
& = \left| {\overrightarrow {OQ} } \right|.\left| {\overrightarrow {OM} } \right|\cos \left( {OQ,OM} \right) \cr&= \left| {\overrightarrow {OQ} } \right|\cos (\left( {OA,OM} \right) - \left( {OA,OQ} \right)) \cr
& = \left| {\overrightarrow {OQ} } \right|\cos \left( {\alpha - \beta } \right),\cr&\left| {\overrightarrow {OQ} } \right| = \sqrt {{a^2} + {b^2}} ,\beta = \left( {OA,OQ} \right) \cr} \)

b) 

Hai điểm \(P\left( {a;b} \right)\) và \(Q\left( {b;a} \right)\) đối xứng qua đường phân giác của góc phần tư thứ nhất của hệ tọa độ, nên dễ thấy

\(\left( {OA,OQ} \right) = {\pi  \over 2} - \left( {OA,OP} \right),\) tức là

\(\beta  = {\pi  \over 2} - \alpha  + k2\pi ,k \in Z.\)

 Vậy

\(a\sin x + b\cos x = \left| {\overrightarrow {OQ} } \right|\cos x\left( {x - \beta } \right)\)

\(= \left| {\overrightarrow {OP} } \right|\cos \left( {x - {\pi  \over 2} + \alpha } \right) = \left| {\overrightarrow {OP} } \right|\sin \left( {x + \alpha } \right)\)

sachaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan