Cho hai đoạn thẳng có độ dài là a và b. Dựng các đoạn thẳng có độ dài tương ứng bằng:
a) \(\sqrt {{a^2} + {b^2}}\) b) \(\sqrt {{a^2} - {b^2}} \,,\,\left( {a > 0} \right)\)
Gợi ý làm bài:
a) \(\sqrt {{a^2} + {b^2}}\)
* Cách dựng (hình a):
− Dựng góc vuông xOy.
− Trên tia Ox, dựng đoạn OA = a.
− Trên tia Oy, dựng đoạn OB = b.
− Nối AB ta có đoạn \(AB = \sqrt {{a^2} + {b^2}} \) cần dựng.
* Chứng minh:
Áp dụng định lý Pi-ta-go vào tam giác vuông AOB, ta có:
\(A{B^2} = O{A^2} + O{B^2} = {a^2} + {b^2}\)
Suy ra: \(AB = \sqrt {{a^2} + {b^2}} \)
b) \(\sqrt {{a^2} - {b^2}} \,,\,\left( {a > 0} \right)\)
* Cách dựng (hình b):
− Dựng góc vuông xOy.
− Trên tia Ox, dựng đoạn OA = b.
− Dựng cung tròn tâm A, bán kính bằng a cắt Oy tại B.
Ta có đoạn \(OB = \sqrt {{a^2} - {b^2}} (a > b)\) cần dựng.
* Chứng minh;
Áp dụng định lí Pi-ta-go vào tam giác vuông AOB, ta có:
\(A{B^2} = O{A^2} + O{B^2} \Rightarrow O{B^2} = A{B^2} - O{A^2} = {a^2} - {b^2}\)
Suy ra: \(OB = \sqrt {{a^2} - {b^2}} \)
Sachbaitap.com
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục